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Introduction

» Data: 2019 Airbnb listings in NYC, 48895 observations.
» Goal: Explore Patterns of Listings
» Care about price and popularity
» What are the influential factors? quantify influence?
» Find the most valuable neighborhoods based on price/popularity
balance
» Set the price of the listing
» Name the listing
> Model:
» CARBayes for log(price) and log(l+reviews_per_month)
respectively.
» LDA for text analysis



EDA: Location matters for price
Distribution of log(price)
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EDA: Location matters for popularity
Distribution of log(1+reviews/mon)
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EDA: Location matters for traffic
2D-Density estimation
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EDA: Potential effects

» Neighborhoods/boroughs: spatial effect exist

» Room type
» Room type matters for price but not for popularity
» Heterogeneity of room type exists across

boroughs/neighborhoods
> Pearson’s Chi-squared test (p-value:<2.2e-16)

Heterogeneity of Room Type Across Neighborhoods (Manhattan)
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Data Preprocessing
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Delete: id, host_name and last_review; 11 listings with
price 0.
Impute: impute 0's for reviews_per_month (10052 records).
Categorize: minimum_nights to 5 groups by weeks.
Transformation: log(price), log(l+reviews_per_month).
Incorporate new dataset:

» shape file for neighbourhoods (NYC Opendata)

> locations for metro stations
Text cleaning:

» Remove punctuations, stopwords, etc.

» Word nomalization (Porter’'s stemmer algorithm)



Model: CARBayes

> Interested in neighbourhood-based patterns

» Multilevel Conditional Autoregressive (CAR) Model

Yiilpwi ~ f(yiilpni, v?),  k = neighbourhood = 1, ...

Jj =listings =1, ..., my

g(ug) = X;gﬁ + Py

, K

Yij = Pk + Ckj
» Priors
B~ N(usg, Zp)
K 2
PO —1 Wk D) T
brld_i ~ /\/( 21=1 (R )
PjmaWk+1—p pXigwy+1l—p

> wy, denotes whether neighborhood k and / are adjacent.

» p denotes spatial dependence.



Model: CARBayes

» Priors (Cont'd)

(i ~ N(0,07)
72,02 ~ Inv-Gamma(a, b)
p ~ Uniform(0,1)

> Xx; include room_type, neighbourhood_group, availability_365,
log(1+reviews_per_month), minimum_nights.

> 1Pij = ¢k + (4 includes both spatial information and individual
random effect.



Text Analysis: Latent Dirichlet Allocation

» Terms:
» Corpus D = {wy,ws,...,wy}
» Doument w = {wy, wa, ..., wy}
» Word w; € {1,..., V}, V is total number of unique words.

» LDA Model:
For all document w in D:
1. N ~ Poisson(§)
2. 0 ~ Dir(«a)
3. For word w,, (n=1,..., N)
(a) choose a topic z,|6 ~ Multinomial(0)
(b) choose a word wy|z,, 8 ~ Multinomial(3,)




LDA results

> 4 topics: Adjectives, Locations, Brooklyn related, Manhattan

related.
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Figure 1: LDA results



Model Summary for log(price)

(Intercept)
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Figure 2: Summary for Model on price



Most influencial factors for log(price)

Model WAIC with all variables and without one variable:

Model

All var

Room type

Availability

Reviews

Night

neighbo

WAIC

63998

85372

66426

64501

66023

70860




Neighbourhood Effect on log(price)
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Text Analysis:
» Wordcloud for price < 1000 (left) and all listings(right)
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Neighburhood-Specific Conclusions

» Manhattan has the highest prices, Bronx the lowest.

» Midtown South (Manhattan) = most expensive, New
Drop-Midland Beach (Staten Island) = cheapest.

» East Elmhurst (Queens) = most popular (LaGuardia Airport),
Co-op City (Bronx) = least popular.

» East Village (Manhattan) = heavest traffic,
park-cemetery-etc-Brooklyn (Queens) = lightest traffic.

> Yorkville = the most lucrative host neighborhood



Neighbourhood Effect on log(price)
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Nelghbourhood EfFect on Popularlty
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Variable Importance Conclusions

Price: Entire room > Private room > Shared room

Higher minimum_nights ~ lower price

Shorter distance to metro stations, higher availability ~ higher
price

Popularity: metro distance no longer significant
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A Model Airbnb: One Example

Spacious, Charming Loft in Upper East Side

Location: Yorkville

Entire Home, $130/night, between 200-300 available days
Close to metro station
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Some Interesting Inferences

» Sonder homes in Manhattan provide some competition!

» Vague descriptors (i.e. “great”) are associated with less
popularity

» Missingness in availability_365 is not MCAR



Future Directions

availability_365 missing data

Spatial-temporal model (last_review)

Nonlinear model for minimum night stay

Point reference spatial model (longitude and latitude)
Random effect for host_id.
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