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Abstract
Airbnb home rental listings vary in price and popularity, and it is natural to explore reasons for
this variance. We apply a multilevel conditional autoregressive Bayesian model to capture associ-
ation between certain Airbnb rental characteristics (including neighbourhood location) and listing
price/popularity in NYC. Room type and minimum nights required are the most influential factors
for price and popularity respectively. Adjusting for influential factors, Midtown South in Manhattan
and East Elmhurst (close to LaGuardia Airport) in Queens are the most expensive and the most popu-
lar neighbourhoods respectively. With respect to a balance between price and popularity, Yorkville in
Manhattan is the most lucrative host neighborhood. Text analysis suggests including location, room
type and positive adjectives in names of listings.

1. Introduction
Airbnb is a platform providing home rentals for travelers. Our observed data consists of 48,895
individual Airbnb listings in New York City. Each listing observation contains the following variables:
host ID, neighbourhood group, neighbourhood, longitude/latitude, available days of the listing in a
year, room type, price, minimum nights required, number of reviews, and reviews per month.

From the perspective of a host, we are interested in exploring the patterns in price and popularity.
Specifically, we are interested in (1) quantifying the influential factors in the price/popularity and
evaluating their influence (2) finding the most valuable neighborhoods adjusted for the influential
factors (3) optimally choosing a location and a price for the listing (4) optimally naming the listing.

2. Materials and Methods
Since the price and popularity are strongly related to the location of listings (Fig. 1, 2), and neigh-
borhoods provide a natural boundary for spatial characteristics of listings, we consider a multilevel
conditional autoregressive Bayesian model (CARBayes)(Lee 2013) based on neighborhood units as
follows:

Ykj |µkj ∼ f(ykj |µkj , ν
2), k = neighbourhood = 1, ...,K

j = listings = 1, ...,mk

g(µkj) = xT
kjβ + ψkj

ψkj = ϕk + ζkj

, where β represents the potential effect of predictor xkj , with a prior β ∼ N(µβ ,Σβ). ϕk and ζkj

represents the neighbourhood effect and individual effect respectively. We consider an autoregressive
prior for ϕk:

ϕk|ϕ−k ∼ N
( ρ

∑K
l=1 wklϕj

ρ
∑K

j=1 wkl + 1 − ρ
,

τ2

ρ
∑K

j=1 wkl + 1 − ρ

)
where wkl ∈ {0, 1} is known from data and wkl = 1 denotes that neighbourhood k is adjacent to
neighbourhood l. ρ ∼ U(0, 1) captures the relation between neighbourhood effects. In summary, this
prior captures the spatial structure among neighbourhoods; each neighborhood’s effect is centered at
the weighted sum of effects from its neighbors.

We consider log(price) and log(1+review_per_month)(popularity) as response variables and model
them separately. We include room type, price, minimum nights required, and popularity/price respec-
tively as predictors based on EDA results. Additionally, we incorporate the logarithm distance from a
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listing to the nearest metro station to account for the heterogeneity of individual spatial effects within
the same neighborhood. We extracted features from names of listings by applying Latent Dirichlet
Allocation (LDA) (Blei, Ng, and Jordan 2003) model and introduced these features as predictors.

To carry out text analysis on names of listings, we first conducted a detailed text cleaning and applied
Porter’s stemmer algorithm to merge the words with the same root. Then we applied Latent Dirichlet
Allocation (Blei, Ng, and Jordan 2003) to explore the latent topics. By assigning each word a weight of
related topics (e.g. adjectives, locations), we extracted features from the listings’ names and included
them in our multilevel CARBayes model. In addition, we conducted word frequency analysis for
different boroughs and different levels of price and used wordclouds to visualize the results.

3. Results

3.1 Exploratory Data Analysis
Initial data exploration suggests a clear spatial structure for price, popularity, and traffic (Fig. 1,2,3).
High-priced listings are concentrated in midtown/downtown Manhattan with some spread into the
part of Brooklyn closest to Manhattan; traffic follows a similar pattern. In contrast, most popular
neighborhoods are located around the LGA airport. Room types appear to be strongly correlated
with price, but not popularity (Fig. 4,5). They also seem to be heterogeneous across boroughs and
neighborhoods (Fig. 6), and we corroborate this with a Pearson’s Chi-squared test (p-value < 2.2e-16).
Our graphs suggest a non-linear effect of room type on price/popularity (Fig. 7,8).

3.2 Data Preprocessing
We remove 11 listings with price equal to 0 and impute 0 for listings with NA reviews_per_month
values since they correspond to listings with zero-valued number_of_reviews. To improve scaling,
we use a logarithm transformation for the response variables price and reviews_per_month. The
choice of predictors are based on the results from EDA; we choose reviews_per_month as a proxy
for popularity. Furthermore, we categorize minimum_night into 5 groups in order to account for it’s
nonlinear association with the response variables. To obtain the adjacency matrix of neighborhoods
in NYC, we incorporate shape files for neighborhoods in New York 1 and reallocate the listings’
neighborhoods based on latitude and longitude. To account for heterogeneity of spatial effects across
listings within the same neighborhood, we introduce a new predictor: the logarithm of distance from a
listing to the closest metro2. In order to carry out text analysis, we first preprocess the listings’ names
by transforming them to lower case and removing non-informative characters such as punctuations,
stopwords, whitespace, and numbers. We then apply Porter’s stemmer algorithm (Porter 2001) for
word normalization, which extracts the common roots of informative words.

3.3 Main Results
From our model coefficient estimation (Fig. 9), our multilevel CAR model on price demonstrates the
following patterns (numbers in parentheses are medians of corresponding coefficients). Entire rooms
(0) are more expensive than private ones (-0.7), which in turn are more expensive than shared ones
(-1.1). Manhattan (0.57) is the most expensive borough, and the Bronx (0) the cheapest. Availability
(0.12) is positively correlated to price while reviews per month is negatively correlated. In addition,
more strict requirements on minimum nights and longer distance to metro stations result in lower
price. Room type is the most influential factor since compared to removing other predictors, our
wAIC increases the most when it is removed from the full price model (Table 1).

1<https://data.cityofnewyork.us/City-Government/Neighborhood-Tabulation-Areas-NTA-/cpf4-rkhq>
2Locations of metro stations: <https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-

7z49>
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Our model on popularity (Fig. 10) yields mostly similar correlation signs but is different as follows.
Compared to the other four boroughs, Queens (0.13) has the highest average review rate. Availability
(0.15) still has a positive effect on popularity, while higher price (-0.12) corresponds to less popular
listings. Moreover, metro distance is no longer significant for predicting popularity. Minimum nights
is the most influential factor since our wAIC increases most when it is removed from the full popularity
model (Table 2).

Heterogeneity across neighbourhoods is shown in Fig. 11 and 12. As shown in 11, neighbourhoods
in Manhattan are more expensive on average, and their confidence intervals are narrower than in
other boroughs. Fig. 13 and 14 present the posterior median of neighbourhoods’ effects for price
and popularity respectively. Among all neighbourhoods, Midtown South in Manhattan is the most
expensive one, while New Drop-Midland Beach in Staten Island is the one with lowest prices. On the
other hand, East Elmhurst (close to LaGuardia Airport) in Queens is the most popular neighbourhood,
and Co-op City is the most unpopular one. If we consider the top 20 neighbourhoods for price and
popularity seperately, one neighborhood appears in both: Yorkville in Manhattan (highlighted in both
Fig. 13 and 14).

Our text analysis (Fig. 15, 16) indicates some critical words related to price: luxury, manhattan,
beautiful. We also carry out LDA to find latent topics in listing names. Four discernable topics
we found were adjectives, locations, Brooklyn-related and Manhattan-related words. Adding these 4
topics into our price model (as 4 indicators), we conclude that Brooklyn and Manhattan-related words
have a positive significant coefficient, while the other two coefficients are significantly negative.

3.4 Sensitivity Analysis
The availability_365 variable has zero-valued observations which may correspond to hosts who tem-
porarily take their listings off the market. Comparing the distribution of other variables for zero-valued
vs. positive-valued availability_365 observations suggests that the data may be missing at random be-
cause we don’t see an obvious pattern in missingness. Using MICE (Buuren and Groothuis-Oudshoorn
2010), we impute the data, treating the zero-valued observations as missing values.

Our model using the imputed data had indistinguishable AIC with our model without imputed data.
As a result, we choose to use the original dataset and in future work, explore missingness of availabil-
ity_365 further.

5. Discussion
Our multilevel CAR Bayesian model successfully discovers patterns of listings addressing both neigh-
borhood level and individual level potential effects. We capture the spatial information at only the
neighborhood levels, which facilitates interpretation as well as eases computation. However, the
heterogeneity across individual spatial information within the same neighborhood may not be well
caputured. To address the heterogeneity at the individual-level, a hierachical point-reference spatial
model may be a better choice.

We assume linear relationships between response variables and predictors such as availability and
distance to the closest metro station. We consider categorizing minimum night to account for the
nonlinear effect we discovered in EDA. To better capture the nonlinear relationship and obtain a more
flexible model, a nonlinear model using spline regression such as GAM would be more reasonable.

Another critical part of this analysis imputing missing data. Although MICE doesn’t perform better
than imputing with 0, exploring other imputation methods could be helpful. Moreover, since different
hosts have different numbers of listings, we can further try approaches that account for their influence
(e.g. random effects).
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Appendix

Latent Dirichlet Allocation
• Terms:

– Corpus D = {w1,w2, ...,wM }

– Doument w = {w1, w2, ..., wN }

– Word wi ∈ {1, ..., V }, V is total number of unique words.

• LDA Model:
For all document w in D:
1. N ∼ Poisson(ξ)
2. θ ∼ Dir(α)
3. For word wn (n = 1, ..., N)
(a) choose a topic zn|θ ∼ Multinomial(θ)
(b) choose a word wn|zn, β ∼ Multinomial(βzn

)

Tables

Model All var Room type Availability Reviews Night neighborhood
WAIC 63998 85372 66426 64501 66023 70860

Table 1: WAIC for model on price: without 1 variable

Model All var Room type Availability Price Night neighborhood
WAIC 74803 75370 78011 75297 80749 75881

Table 2: WAIC for model on popularity: without 1 variable

Figures
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Figure 1: Distribution of log(price)
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Figure 2: Distribution of log(1+reviews/mon)
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Figure 3: 2D-Density estimation
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Figure 4: Association between price and room type
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Figure 5: Association between review/mon and room type
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Figure 6: Heterogeneity of Room Type Across Neighborhoods (Manhattan)
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Figure 7: Association between price and minimum night
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Figure 8: Association between review/month and minimum night
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Figure 9: CAR Model on price - Model Summary

Figure 10: CAR Model on popularity - Model Summary
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Figure 11: CAR Model on price - Neighbourhoods
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Figure 12: CAR Model on popularity - Neighbourhoods
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Figure 13: Neighborhoods’ effects for price
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Figure 14: Neighborhoods’ effects for popularity
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Figure 15: Wordcloud for listings with price > 2000
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Figure 16: Wordcloud for listings
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Figure 17: LDA: Top 10 words in each topic
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