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1. Introduction

In observation studies, our target population may have a network structure. Interference may occur if the potential outcome of
one unit depends on both individual treatment and neighborhood treatment. The present of interference will break down the
traditional assumptions and framework. In this project, we review the paper by Forastiere et al. (2016, [1]), which provides
a extended framework and solution for the existence of interference. The basic idea for the framework and assumption
extension is to take neighbors into consideration, which means to extend potential outcomes, assignment mechanism and
average does-response function as a function of both individual and neighborhood treatment. Accordingly, propensity score
is generalized to a joint propensity score then decomposed to individual and neighborhood propensity score, from which a
estimating procedure is proposed. Here we focus only on causal inference on main effect (individual effect) when interference
presents. We reproduced the simulations by Forastiere et al. (2016, [1]) based on Facebook data obtained from Stanford
Network Analysis Project (SNAP)(Leskovec and Mcaule, 2012 [3]).

2. Problem formulation

2.1. Notations

Let Wi ∈ {0, 1}, Yi ∈ Y and Xi ∈ X denote the treatment, outcome and covariates of individual i respectively. The
covariates can be decomposed to Xind

i ∈ X ind and Xneigh
i ∈ Xneigh, which is only correlated to characteristics of an

individual and its neighbors respectively. Denote the undirected network as G = (N , E). For each node i, consider partitions
(i,Ni,N−i), denoting individual i, i’s neighbors Ni, individuals outside i’s neighbors N−i respectively. Therefore, the W

and Y for the whole population N can be written as (Wi,WNi ,WN−i) and (Yi,YNi ,YN−i).

2.2. Potential outcomes

Classical stable unit treatment value assumption (SUTVA)(Rubin, 1980 [4], 1986 [5]) assumes consistency and no inter-
ference. When the interference presents, the first assumption of SUTVA (consistency) still holds. However, the second
assumption of SUTVA is extended to allow neighborhood interference. We called the extended assumption as Stable Unit
Treatment Neighborhood Value Assumptions(SUTNVA). Assumption 2.1 indicates there is no other version for the treat-
ment. Assumption 2.2 rules out the effects outside the neighborhoods, but allows effects from neighbors through a specific
function g(·). This restriction introduced by the function g(·) can help to reduce the dimension of space of potential outcomes
from 2Ni to |Gi|. Let Gi = gi(WNi) denotes the neighborhood treatment. Based on SUTNVA assumption, we can define
the potential outcomes as a function of both individual effect Wi and neighborhood effect Gi.

Assumption 2.1 (No Multiple Versions of Treatment(Consistency)) Yi = Yi(W)

Assumption 2.2 (Neighborhood Interference) Given a function gi : {0, 1}Ni → Gi, ∀i ∈ N , ∀WN−i
, W′

N−i
and

∀WNi ,W
′
Ni

,gi(WNi) = gi(W
′
Ni

), the following equality holds:

Yi(Wi,WNi
,WN−i

) = Yi(Wi,W
′
Ni
,W′

N−i
)
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Definition 2.1 (Potential outcomes) For a subset of nodes Vg = {i : g ∈ Gi} where Gi = gi(WNi)

Yi(w, g) = Yi(Wi = w,Gi = g)

2.3. Assignment mechanism

The assignment mechanism is extended to include neighborhood treatment. Since neighborhood treatment G depends on
both network structure and treatment of neighbors, G is restricted within a range resulting from G and W.

Definition 2.2 (Assignment mechanism)

P (W,G|X, {Y(w, g), w = 0, 1; g ∈ G}) =

{
P (W|X, {Y(w, g), w = 0, 1; g ∈ G}) if G = g(W)

0 otherwise

The unconfoundedness assumption is extended to assume the potential outcomes is conditionally independent to both indi-
vidual effects and neighborhoods effects.

Assumption 2.3 (Unconfoundness of Individual and Neighborhood Treatment)

Yi(w, g) |= Wi, Gi|Xi ∀w ∈ {0, 1}, g ∈ Gi,∀i

2.4. Causal estimands

The main effect τ(g) and spillover effect δ(g;w) are defined with holding the neighborhood treatment and the individual
treatment as a constant respectively. The overall main effect and overall spillover effect are obtained by marginalizing the
neighborhood treatment g. The total effect is defined by setting the controlled unit as untreated for both the individual itself
and its neighbors. In addition, the total effect can be written as a sum of over main effect and overall spillover effect at w = 0.

Definition 2.3 (Main effect) τ(g) = E[Yi(Wi = 1, Gi = g)− Yi(Wi = 0, Gi = g)|i ∈ Vg]

Definition 2.4 (overall main effect) τ =
∑

g∈G τ(g)P (Gi = g)

Definition 2.5 (Spillover effect) δ(g;w) = E[Yi(Wi = w,Gi = g)− Yi(Wi = w,Gi = 0)|i ∈ Vg]

Definition 2.6 (overall spillover effect) ∆(w) =
∑

g∈G δ(g;w)P (Gi = g)

Definition 2.7 (Total effect)

TE =
∑
g∈G

E[Yi(Wi = 1, Gi = g)− Yi(Wi = 0, Gi = 0)|i ∈ Vg]P (Gi = g) = τ + ∆(0)

Theorem 2.1 (Identification of Average dose-response function (ADRF)) If assumption 2.1,2.2,2.3 hold, ADRF is identi-
fiable, ∀w ∈ {0, 1}, g ∈ G

µ(w, g) = E[Yi(w, g)|i ∈ Vg] =
∑
x∈X

E[Yi|Wi = w,Gi = g,Xi = x, i ∈ Vg]P (Xi = x|i ∈ Vg)

3. Generalized Propensity Score Based Estimator

3.1. Definition of GPS

Define the joint propensity score as joint probability of individual and neighborhood treatment conditional on all the co-
variates. Apply the chain rule to decompose the joint propensity score into individual propensity score and neighborhood
propensity score.
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Definition 3.1 (Joint propensity score) ψ(w; g;x) = P (Wi = w,Gi = g|Xi = x)

Definition 3.2 (Neighborhood propensity score) λ(g;w;xg) = P (Gi = g|Wi = w,Xg
i = xg)

Definition 3.3 (Individual propensity score) φ(w;xw) = P (Wi = w|Xw
i = xw)

ψ(w; g;x) = P (Wi = w,Gi = g|Xi = x)

= P (Gi = g|Wi = w,Xg
i = xg)P (Wi = w|Xw

i = xw)

= λ(g;w;xg)φ(w;xw)

3.2. Properties of GPS

Based on the extended SUTNVA assumption and unconfoundedness of individual and neighborhood treatment assumption,
the generalized proposity score defined previously has the following properties.

Proposition 3.1 (Balancing) P (Wi, Gi|Xi, ψ(w; g;Xi)) = P (Wi, Gi|ψ(w; g;Xi))

Proposition 3.2 (Conditional Unconfoundedness (joint))

Yi(w, g) |= Wi, Gi|ψ(w; g;Xi) ∀w ∈ {0, 1}, g ∈ Gi

Proposition 3.3 (Conditional Unconfoundedness)

Yi(w, g) |= Wi, Gi|λ(g;w;Xg
i ), φ(1;Xw

i ) ∀w ∈ {0, 1}, g ∈ Gi

Proposition 3.1 ensures that if we balance the joint propensity score, we can balance the covariates. Proposition 3.2 en-
sures the conditional independence of potential outcomes and the treatment given the joint propensity score. Further, the
unconfoundedness holds given the individual and neighborhood propensity score. Based on these properties, we can estimate
ADRF using individual and neighborhood propensity score.

E[E[Yi|Wi = w,Gi = g, λ(g;w;Xg
i ), φ(1;Xw

i )]|Wi = w,Gi = g] (1)

3.3. Estimating procedure

The GPS-based estimator is conditioned on two propensity scores compared to the ordinary PS-based estimator. The basic
idea is to balance one of the propensity score using stratification, then within each stratification, using regression, weighting
or matching to estimate ADRF based on the other propensity score. Since the neighborhood PS has multiple levels, we
first sub-classify based on individual PS, then within each stratification, using regression conditional on the neighborhood
propensity score, individual treatment and neighborhood treatment. At last, we estimate ADRF based on weighted sum of
estimation on ADRF within each stratification. The estimating procedure is as follows:

1. Subclassification on φ(1;Xw
i )

(a) Estimate φ(1;Xw
i ): logistic regression Wi ∼ Xw

i

(b) Predict φ(1;Xw
i )

(c) Subclassify J subclasses Bj by φ(1;Xw
i ) where Xw

i |= Wi|i ∈ Bj

2. Within Bj , estimate µj(w, g) = E[Yi(w, g)|i ∈ Bg
j ] where Bg

j = Vg ∩Bj

(a) Estimate λ(g;w;Xg
i ): Gi ∼Wi + Xg

i

(b) Estimate outcome model Yi ∼ λ(g;w;Xg
i ) +Wi +Gi

(c) Predict Yi(w, g)

(d) Estimate µ̂j(w, g) =
∑

i∈Bg
j
Ŷi(w, g)/|Bg

j |

3. Estimate µ̂(w, g) =
∑J

j=1 µ̂j(w, g)πg
j where πg

j = |Bg
j |/vg
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4. Simulation

We estimate the main effect based on a known network and unknown assignment mechanisms. We consider a real friendship
network from Facebook, which is obtained from Stanford Network Analysis Project (SNAP)(McAuley and Leskovec, 2012
[3]). This network contains 4039 nodes and 88234 edges. The average clustering coefficient is 0.6055. We consider only
two individual covariates genderi, indicating individual’s gender, and agei, a discrete variable indicating individual’s age.
Consider the node degree and the mean of neighbors’ ages and genders as neighborhood covariates. Denote the covariates as
Xind

i = (genderi, agei) and Xneigh
i = (

∑
k∈Ni

genderk/Ni,
∑

k∈Ni
agek/Ni, Ni). We consider the function g as the pro-

portion of treated neighbors. We consider two scenarios of dependence between individual treatment Wi and neighborhood
treatment Gi.

Scenario 1: Wi |= Gi|Xind
i . Generate Wi depending on individual gender and age.

Scenario 2: Wi |= Gi|Xind
i ,Xneigh

i . Generate Wi depending on individual gender and age, and on neighbors’ gender and
age.

We adopt the similar data generating process as the paper, but adjusted the parameters to make sure the balance of covariate
distribution and conditional independence. Then we compared the GPS-based estimator to other estimators.

4.1. Assignment mechanism

Scenario 1 We generate individual treatment according to the following propensity score

logit(P (Wi = 1)) = −1.5 + 1.2genderi + 0.3agei (2)

Then we obtain the neighborhood treatment Gi as the proportion of treated neighbors. Here we provide one simulation to
show a specific structure induced by the assignment mechanism.

Variables X̄T X̄C Std X̄Gi≥0.5 X̄Gi<0.5 Std
Gender 1.448 1.178 0.382 1.366 1.283 0.018

Age 3.999 0.563 0.705 3.089 1.188 7.140
Neighbors’ Gender 1.337 1.289 0.180 1.340 1.180 0.058

Neighbors’ Age 3.123 2.387 0.265 3.154 0.845 9.592
Degree 46.913 37.166 0.130 47.953 12.092 0.480
Gi(orWi) 0.660 0.626 0.144 0.683 0.567 0.165

Table 1. Covariate balance across individual and dichotomized neighborhood treatment arms

Table 1 shows the balance of covariate distributions. For the individual treatment, the individual covariates and the neighbor-
hood covariates are imbalanced, which is due to the propensity score generating process and the homophily of the network
respectively. For the dichotomized neighborhood treatment, the imbalance of covariates is due to the homophily. Table 2
shows zero correlation between neighborhood treatment and individual treatment given Xind, which ensures our simulations
satisfying Wi |= Gi|Xind

i .

Variables Estimate SE P-value
Gender 0.055 0.142 0.700

Age 0.003 0.025 0.898
Neighbors’ Gender 2.941 0.347 <2e-16

Neighbors’ Age 0.702 0.065 <2e-16
Degree 0.082 0.008 <2e-16
Wi -0.241 0.153 0.117

Table 2. Coefficients of logistic regression
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Scenario 2 We generate individual treatment according to the following propensity score

logit(P (Wi = 1)) = −5 + 0.5genderi + 0.1agei + 2.5neighbors.genderi + 0.4neighbors.agei (3)

Similarly, for scenario 2, we present a simulation show the structure of the assignment mechanism. Table 3 shows the
individual covariates and neighborhood covariates are imbalanced, which is due to the propensity score generating pro-
cess and homophily. For the dichotomized neighborhood treatment, the imbalance of covariates is due to the propensity
score and homophily. Table 4 shows zero correlation between neighborhood treatment and individual treatment given all
covariates Xw, but correlation exists if only given individual covariates Xind, which ensures our simulations satisfying
Wi |= Gi|Xind

i ,Xneigh
i .

Variables X̄T X̄C Std X̄Gi≥0.5 X̄Gi<0.5 Std
Gender 1.422 1.274 0.203 1.402 1.260 0.026

Age 3.948 1.416 0.463 3.669 1.040 10.133
Neighbors’ Gender 1.363 1.265 0.378 1.363 1.226 0.053

Neighbors’ Age 3.565 1.965 0.616 3.689 1.047 8.187
Degree 53.833 30.154 0.336 53.630 21.180 0.461
Gi(or Wi) 0.665 0.490 0.544 0.676 0.336 0.466

Table 3. Covariate balance across individual and dichotomized neighborhood treatment arms

Xw Xind

Variables Estimate SE P-value Estimate SE P-value
Gender 0.485 0.113 1.95e-05 0.621 0.093 2e-11

Age 0.065 0.022 3.59e-03 0.144 0.018 9.42e-16
Neighbors’ Gender 4.323 0.320 <2e-16 - - -

Neighbors’ Age 1.165 0.061 <2e-16 - - -
Degree -0.001 0.002 0.545 0.025 0.002 <2e-16
Wi 0.064 0.409 <2e-16 0.904 0.101 <2e-16

Table 4. Coefficients of logistic regression

4.2. Outcome models

Here we consider the following outcome models for scenario 1 and 2.

Yi(w, g) ∼ N(µ(w, g,Xind
i ), 1) (4)

µ(w, g,Xind
i ) = 15− 7I(φ(1,Xind) ≥ 0.85)− 15w + 3wI(φ(1,Xind) ≥ 0.85) + δg (5)

where we consider δ ∈ (−5,−8,−10) corresponding to a low, medium and high level of interference. According to the
model, we have the true main effect τ = −15 + 3I(φ(1,Xind

i ) ≥ 0.85). Notice that the propensity score and the treatment
assignment are different for two scenarios.

4.3. Comparison of different estimator

We then compare the GPS-based estimator proposed by with other estimators (Imbens and Rubin, 2015 [2]). Specifically, we
run 500 replications of the two scenarios and calculate the following estimator within each replication. The unadjusted esti-
mator is a simple difference in means between treated and untreated units. Regression Xind and Regression Xw are ordinary
ordinary least squares estimators resulting from Y ∼W +Xind and Y ∼W +Xw, where Xw = (Xind,Xneigh). Subclass
Xind and Subclass Xw are estimators based on subclassification on the individual propensity score estimated by φ̂(1,Xind)
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Unadjusted RegressionXind SubclassXind RegressionXw SubclassXw Subclass-GPS
δ Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
low -2.260 2.611 -0.572 0.575 -0.283 0.459 -0.573 0.576 -0.334 0.342 -0.039 0.076
med -2.368 2.369 -0.573 0.578 -0.299 0.487 -0.576 0.580 -0.351 0.363 -0.036 0.072
high -2.441 2.443 -0.576 0.582 -0.308 0.505 -0.579 0.584 -0.368 0.381 -0.039 0.075
low -2.990 2.991 -2.175 2.178 -2.126 2.146 -0.270 0.282 -0.181 0.191 -0.001 0.058
med -3.542 3.544 -2.583 2.585 -2.555 2.580 -0.281 0.295 -0.228 0.240 0.001 0.059
high -3.915 3.916 -2.859 2.862 -2.846 2.873 -0.292 0.307 -0.262 0.275 -0.000 0.058

Table 5. Estimation of main effect τ

and φ̂(1,Xw) respectively. Subclass-GPS is the proposed estimator in section 3.3, which is based on subclassification on the
individual propensity score φ̂(1,Xw) and model-based (regression) adjustment for the neighborhood propensity score.

Table 5 shows the comparison between different estimators under two different scenarios. The first five estimators are biased
and the bias is proportional to the degree of interference δ. This is because the first five estimators ignore the interference.
In scenario 1, individual treatment and neighborhood treatment is independent conditional on individual covariates. In this
case, the subclassification-based estimators should be unbiasd since they are well adjusted by only individual covariates. The
relative large bias may due to the homophily. However, the regression-based estimators are biased due to the misspecified
outcome model. The unadjusted estimator is biased due to the confounders Xind. In scenario 2, the individual treatment
and neighborhood treatment are not independent if only given the individual covariates. Therefore, the first three estimators
are biased with a large deviation due to interference. By adjusting on Xneigh, the regression and subclassification based
estimators can decrease the bias brought from interference to some degree but cannot eliminate the bias caused by interfer-
ence. And due to the misspecification, the regression-based estimators have larger bias than the subclassification estimators
do. In constrast, the proposed method can eliminate the bias caused by interference through adjusting the individual and
neighborhood propensity scores.
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