Modeling Dynamic International Relationship

Yunran Chen

1. Introduction

I am interested in modeling dynamic networks, where each edge between pairs of nodes can be seen as a time
series. In this project, I am trying to fit a dynamic international relationship to explore the time-varying relational
structure instead of making prediction.

For social networks, the latent space model proposed by Hoff ez al. (2002 [6], 2005 [3]]) is widely used. The ba-
sic idea is to introduce a multiplicative random effect to the mix effect model. Such multiplicative random effect
can induce a third dependence structure, which accommodates some typical dyadic characteristics, such as ho-
mophily and stochastic equivalence (“friends of my friends are my friends”, “enemies of enemies are my friends”)
(Hoff 2008, [4]]). However, the latent space model is for static networks. Durante and Dunson(2014 [3]]) extended
this model to a model for dynamic networks evolving in continuous time by setting Gaussian process for each
element. Instead of considering continuous time, I consider discrete time series. Explicitly, I assume each element
as a stationary AR(1) process. First, I explored the properties of product of two stationary AR(1) processes. Based
on this, I derived Gibbs sampling scheme with Pélya-Gamma augmentation for posterior computation. Then I did
extensive simulations on the choice of parameters and applied the proposed model to analyze the real dataset. At
the end I provide detailed discussion on the limitations and further directions.
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Figure 1. Dynamic international relationship at selected time

2. Modeling
2.1. Model specification

Consider a series of symmetric binary matrices Y, ¢ € {1, ..., T'}, with corresponding probability for each entry
denoted as m;j; = Pr(y;;s = 1) fori,j = 2,...,V;i > j. I consider logistics regression and only include main
effect 1; and multiplicative latent factor x; 4.
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where i is a scalar at time ¢, indicating the main effect for all the individuals at time ¢; where z;; =
{zi1t, .., :EiH’t}T fori,5 = 2,...,V;i7 > j are multiplicative vectors indicating the location of “latent space”
for individual ¢, with H indicates the dimension of the latent space.

Here 1 assume each element p, z;;, where ¢ = 2,...,V;h = 1,..., H evolves via stationary AR(1) process
separatelyﬂ Since the policy of a country is consistent in real world, I only consider positive value of ¢, which
means 0 < ¢ < 1.

He = ¢uﬂt—1 + €uts €ut ™~ N(Oa vu)- ()
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The multiplicative effect in equation[I]is a summation of a series of product of two stationary AR(1) processes.
In order to design a sampling scheme and have more insights on the model, I explored the properties of product of
two AR(1) processes.

2.2. Properties of product of two AR(1) processes

Consider two independent AR(1) processes z1; <— AR(1|(¢1,v1)) and xo; < AR(1|(¢2,v2)). The marginal
distribution of z1; and x9; are normal distribution N (0, s1) and N (0, s2) respectively, where s; = v /(1 — ¢7)
and sy = va/(1 — ¢3). We are interested in the properties of z; where z; = x1472;.

z; is stationary.

E(z) =0, Var(z)=sis2, Corr(z,z—i) = (p162)". 4)

Since x1; and x9; are stationary processes, the product of two stationary processes will still be stationary.
We can calculate expectation E(z;) using the formula E(XY) = E(X)E(Y) for independent X, Y’; calculate
Var(z) using the formula Var(XY) = E(X?%Y?) — (E(XY))? = Var(X)Var(Y) + Var(X)(E(Y))? +
Var(Y)(E(X))? for independent X, Y; calculate Corr(z;) using law of total expectation E(X) = E(E(X|Y)).

Consider ¢; = ¢ = 0.9,v1 = vy = 1, I simulated a z; series. As Figure [3|shows, z; is also stationary and
centered at 0. However, z; has higher volatility and we can see more spikes at a high level compared to the x1;
and x9;. And the dependence across time of z; decays much faster than x1; and x9; do.

z; is non-Markovian.

Figure 2| captures the relationship between x1;, x2¢, 2;. Since the series 14 is correlated and so is 2, when we
marginalize z1; and zo;, the z; will be non-Markovian. This property restricts the sampling schemes for posterior
computation.
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Figure 2. Directed acyclic graph (DAG) for z;

I'The choice of AR(1) process is for the simplicity of modeling.
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Figure 3. A trajectory of x1¢+,29; and corresponding z; Figure 4. Correlation plot for z;

We cannot identify =, and x;, but z; is identifiable. For any non-zero constant ¢, z; = (x1¢ X ¢) X (x2:/c) =
x1¢xo. Therefore, given zy, x1; and xo; are not identiﬁableﬁ However, in this project, since 1 only focus on
inference on z; instead of inference on =1+ and 2, this non-identifiability is not a issue here.

Gibbs sampling is needed. Since the z; is the product of two normal distributed random variables, we cannot
derived posterior of z1+ and x9; given z; directly. But given known x1;, we can directly derive the full conditional
distribution of z9; given z; and 1, . Therefore, I apply a Gibbs sampling. I sample x1; from p(x1¢|xas, 2¢) and zo,
from p(z1¢|wat, 2¢) then get z; = x1429:. In section I show how to apply Gibbs sampling in logistic regression
with Pélya-Gamma data augmentation.

2.3. Choice of ¢ and v

Here I provide some insights on how the values of ¢ and v effect the m; in the model
logit(m) = w1y

where x1; < AR(1|(¢1,v1)) and xoy < AR(1|(¢2,v2)). A better understanding on the meaning of ¢ and v will
help us to set a reasonable prior for our model.

For AR(1) process x;, v controls the scale of volatility. Explicitly, a larger value of v lead to larger variance
of marginal distribution of x; and larger covariance of x; across time. Moreover, such influence is boosted by the
value of ¢, since the marginal distribution of z; is N (0, s) where s = v/(1 — ¢?). A larger value of ¢ leads to a
larger value of s. Apart from the “boosting” effect on volatility, ¢ also controls the dependence across time. The
correlation between z; and z;_, is ¢*. With a larger ¢, the dependence is larger.

For the product of AR(1) processes, equation[d shows ¢ and v of each AR(1) process add multiplicative effects
on the distribution of z;. The variance and the covariance of z; is a function of product of ¢1, ¢5 and product of
s1, 2. With larger vy, va, the volatility of z; is larger. With larger ¢1, ¢2, the volatility of z; and the dependence
across time are larger.

From z; to m, I use the logistics function. As Figure [5] shows, those points with values close to 0 will be
mapped to points centered around 0.5, while those points with values far from 0 will be pushed to the boundary
0,1. Notice the logistics mapping is sensitive to area around O but flat for area outside 5. Therefore, z; with a
distribution centered at 0 with less volatility will be mapping to 7r; with distribution concentrated at 0.5. Otherwise,
z¢ with a flat distribution spreading within a wider range will be mapping to m; with higher probability on both 0
and 1. The range of z; is controlled by s. This means a large s will push the 7; centered at two extreme values
with large probability.

Consider a matrix case in equation for any orthogonal matrix Q, Z: = X:QQ* X! = X; X[ . Z; is non-identifiable.



Figure 5. Logistic function
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Figure 6. Histograms of marginal distributions of x14, x2¢,2; and 7. From left to right, each column indicates histograms for
series 14, T2¢,2¢ and 7. From top to bottom, each row indicates the values of ¢ = 0.1,0.5,0.7 and fixed v = 1.

Figure |§| shows the marginal distribution of x1;,22;,2¢,7; under different values of ¢ and same value of v. We
can see as ¢ increases, the variance s increases, leading to the distributions of z1; and x9; spread within a larger
range. (Notice that the scale for each histogram is different.) Accordingly, the z; will be more flat within a much
wider range. After the logistic mapping, the points around 0 are mapped to the points around 0.5, while the points
with absolute value greater than 5 are pushed to the the boundary 0, 1. Therefore, with increasing ¢, we see the
shape of distribution of 7; changing from one peak centered at 0.5 to two peaks centered at the boundary. This
inspired us to choose s within a relative small range to provide a non-informative prior for 7. Also, since the
effect of v on the series is always combined with 1 — ¢2, we consider (¢, s) instead of (¢, v) for the distribution
specification.

2.4. Gibbs sampling scheme with Pélya-Gamma augmentation

Since we do not focus on the identification on x; ¢, there is no need to set different ¢ for each component of latent
factor. Assume each component of latent factor share the same hyperparameter ¢, vz, Tip ¢ < AR1|(¢pz,vz)),
where 7,7 = 2,...,V;i > j;h = 1,..., H*. Notice that H* denotes the estimation of unknown dimension of
latent factor, which is considered as a hyperparameter. For s, assume ji; < AR(1|(¢,,v,)). Then we have the
stationary joint distribution for 1i; and x;p; as follows:

(11, s i) ~ N(0, c,), where ¢, ;; = suqﬁlf’t sy =0,/(1— @)
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(xin1, ...,xih,N)T ~ N(0,¢;), where ¢, = squf_t’l, Sz = vz /(1 — ¢z)

For a logistic regression with normal distribution as a prior, we can apply a Pélya-Gamma data augmentation
for posterior computation (Polson et al.,2013 [7]]). The Gibbs sampling scheme shows as follows.

1. Update Wi t- ’Ll)ij"t’— ~ PG{L ue + Zth*l l'g;lxjh}
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3. Simulations

I conduct simulations to evaluate the model’s performance on fitting and prediction based on ROC-AUC crite-
rion. I also include sensitivity analysis on the choice of the dimension of latent space H*, and ¢, ¢, vz, v,, for
the stationary AR(1) process. And more discussion on learning of these parameters can be found in section [5]

I generated dynamic matrices Y;,t € {1,...,40};4,7 = 2,...,15;4 > j as equation describes. In addition, I
set the whole matrix Y} as missing values to evaluate the performance for prediction. I consider ¢, = ¢, = 0.9,
sy = s, = 1 and H = 2 when generating the data. I consider the prior with ¢/, = gZ)L =038, s; = s, = 1and
H* = 10 for posterior sampling.

I ran 5000 iterations with 1000 burn-in. The effective sample size of m;;; is around 2500, showing a good
mixing. Figure[/|and figure[8suggest good performance of model fitting. Figure|/|shows the comparison between
m;j,+ and 7;;;. We can see the estimators capture the structural characteristics well and the difference is relative
small. From figure |8 we can see most of the points are gathering around the y = z line. The AUC for estimation
and prediction is 0.9885 and 0.6822 respectively. Figure[J|presents graphical summaries for trajectories of sampled
it and s ¢. We can see that the posterior mean nearly overlaps with the truth and captures the trend well across



time. And most of the time the truth is covered by the 95% credible interval. Notice that the performance of
prediction of proposed model is poor. I set the H* = 10 which may result in overfitting El One way to avoid
overfitting is to add a shrinkage prior to restrict the effect of the latent factors (Durante and Dunson, 2014 [3]).

value

Figure 7. Model performance at selected time. From top to bottom, each panel indicates the absolute difference |m; — 7,
estimate values 7; and true values 7; respectively. From left to right, each panel indicate matrices at the different time point
t = 10, 20, 30, 40. Notice the Y} is held out for prediction.

Figure 8. Model performance on fitting and prediction. (a)Scatter plot for estimator 7;; versus true 7;; including all data.
(b)ROC curve only for fitting values. (c)ROC curve only for prediction values.

Figure 9. Graphical summary of trajectories of sampled /i and 75 g. The solid line and dash line represent true and estimated
values respectively. The grey ribbon represents 95% highest posterior density intervals.

Furthermore, I conducted extensive sensitivity analysis as table[I] shows. The simulations with ID 1-5 provide
baselines for the AUC under correctly specified parameters, from which we can see the AUC still fluctuate from

3In the sensitivity analysis, for correctly specified H, the AUC for prediction is around 0.86.



0.78 to 0.95. Under the well specified parameters, a larger value of ¢ brings better performance on fitting but worse
performance on prediction. Since a larger value of ¢ brings more dependency across time, the model will learn
from past and show less flexibility for fitting. In contrast, making use of past information helps the model to predict
more accurately. Therefore, the choice of ¢ is a trade-off between the accuracy of estimation and prediction. For
the s, a relative small value indicate a large number of 7;; ; gathering around 0.5, which contains little information.
If the truth contains little information, it is hard to learn from the data even if the parameters are correctly specified.
Therefore, we see the poor performance for both model fitting and prediction. Notice that if the s is too large,
trying to fit the data is meaningless since most of 7;;; will be around 0 or 1.

ID | ¢usbu  Sus5u  Ppsby  Shs, H*  AUC(fitting)  AUC(prediction)
1 0.9 1 0.9 1 2 0.8692 0.6395
2 0.8 1 0.8 1 2 0.8911 0.6919
3 0.99 1 0.99 1 2 0.8615 0.8541
4 0.9 2 0.9 2 2 0.9463 0.842
5 0.9 0.5 0.9 0.5 2 0.776 0.5385
6 0.9 1 0.9 1 5 0.92 0.5279
7 0.9 1 0.9 1 10 0.958 0.6682
8 0.9 1 0.8 1 10 0.9885 0.6822
9 0.9 1 0.99 1 10 0.8352 0.6661
10 0.9 1 0.8 0.5 10 0.949 0.5322
11 0.9 1 0.99 0.5 10 0.8048 0.5364
12 0.9 1 0.99 5 10 0.9218 0.7046

Table 1. Sensitivity of parameter setting. ID 1-5 act as a baseline to see the fluctuation of the AUC under correctly specified
parameters. ID 1,6,7 are for comparison of the choice of H*. ID 7,8,9 are for comparison of the mis-specified ¢. ID 8,10
and ID 9,11,12 are for comparison of the mis-specified s.

Generally, larger H* brings more flexibility to the model, leading to better performances of model fitting. As
a trade-off, the model with large H* may take a risk of overfitting, leading to a poor performance for prediction.
Similar trade-off for the choice of ¢. With a smaller value of ¢, the model relies less on the past and thus is more
flexible, leading to a better performance for fitting. In contrast, the less information learned from the past leading
to a worse performance for prediction. For the choice of s, small value brings non-informative prior, which may
be inefficient for parameter estimation. Large value of s may lead to wrong estimation with higher confidence.

For a good performance of model fitting, I suggest to choose a relative large H*, a moderate ¢ for flexibility
and a relative small s for a non-informative prior.

4. Real Data Analysis

My goal is to fit a social network of international cooperative actions between the world’s top 15 largest
economies ranked by nominal GDP from 2007 to 2010. I extracted the event “Sign formal agreement”(CAMEO
code 57) from Integrated Crisis Early Warning System (ICEWS) Dataverse [[1], and constructed dynamic sym-
metric binary matrices {Y;;, : t € {1,...,48},4,5 € {2,...,15},% > j} using monthly interactions. Specifically,
Yi;+ = 1 indicates country ¢ signed formal agreements with country j at least once in month ¢, while Y;;; = 0
indicates country ¢ did not sign formal agreements with country 5 at all in month ¢.

Iset H* = 10, ¢, = ¢, = 0.9, s = 1. This is the best parameter setting I found for good performance of
both model fitting and prediction. Notice that although I focus on model fitting, I also consider the performance of
prediction to avoid overfitting. Specifically, I set the whole matrix Y;g as missing values to evaluate the prediction
performance.
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Figure 10. Model performance on fitting and prediction. (a)Scatter plot for estimator 7;; versus true ;; including all data.
(b)ROC curve only for fitting values. (c)ROC curve only for prediction values.

Figure 11. Graphical summary of trajectories of sampled ji. The solid line represent posterior mean. The grey ribbon
represents 95% highest posterior density intervals.

I ran 5000 iterations with 1000 burn-in. Most of the effective sample size of m;;; is around 2300 as shown
in Figure suggesting good mixing. The AUC for fitting and prediction are 0.9854 and 0.8092 respectively,
showing good performance. Figure[T1]shows the baseline trends ji;. The flat 41, indicates the relationships between
the 15 countries are quite stable and do not have significant trends or dramatic changes. However, p; slightly goes
down during 2007, and has higher amplitude during 2008, and has higher frequency during the second half year
of 2009, then goes up at the August 2010. This trend may correspond to the 2008 financial crisis.

Figure [12] shows the correlation matrices between 15 countries at selected time points. The darker color indi-
cates the higher probability of the existence of a link. The model captures the pattern of the relation matrices well
for the dark parts in the top panel almost match with the black parts in the bottom panel.
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Figure 12. Model performance at selected time. The top panel indicates posterior mean 7 (¢) and the bottom panel indicates
the true relation data.

Figure [[3] shows the probability of the existences of dynamic bilateral relations. We can refer which country
maintained close relationship with China, and the corresponding evolving trend. From Figure[I3|a), Japan, Russia,
South Korea and the United States maintained more close relationship compared to the other countries. Detailed
trajectory plots unveil the bilateral relations. From 2009/7 to 2010/7, Japan had less connections with China,



which is a little weird, since Yukio Hatoyama, who took office during this period, is pro-China politician. Maybe a
large number of agreements were signed, which is hided behind the binary data. From July 2009 to July 2010, less
agreements were assigned between China and Russia, which may due to the thaw between Russia and the United
States took the main focus. Since October 2009, the relationship between China and South Korea deteriorated.
This may be connected to the deteriorating relationship between South Korea and North Korea. The government
of South Korea showed their dissatisfaction to the attitude of China towards the dispute between South Korea and
North Korea. From Figure T3] (e), we can also see large fluctuations between China and the United States since
January 2010, which may be connected to the tensions due to the tightened censorship from China. Generally,
from Figure [I3a), we can see some significant light color on 2009/7 and 2010/4 to 2010/7. Such decrease in
the relations may be connected to the worst ethnic violence in Xinjiang regionﬂ The light color from 2010/4 to
2010/7 may be connected to the political change.(Vice-President Xi Jinping named vice-chairman of powerful
Central Military Commission in October 2010.)

(a)China (b)Japan (c)Russia (d)South Korea (e)United States
100 R T T e 1.00f = o
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Figure 13. Parameter estimation of ;; ; for China and Italy, and the bilateral relations. The left tiles plots show the dynamic
relationship between China(or Italy) and other countries. The grey plots indicate the dynamic bilateral relations. The solid
lines represent posterior mean. The grey ribbons represent 95% highest posterior density intervals. The black points represent
the true relation data.

Compared to China, Italy did not actively take part into the international relationships. From Figure[T3]f), most
tiles are in light color, and there are several dark colored ribbon at around 2008/4, 2008/10 and 2009/4. This active
period may be correlated to diplomatic policy from a new government (Berlusconi wins the general elections in
April 2008). These active periods may also be correlated to assistance corresponding to the recession (officially
declared in November 2008) and the earthquake (in the mountainous Abruzzo region in April 2009).

Generally, the trends of the parameters are close related to natural disasters, financial crisis, new administrations
(diplomatic policies), and other events. Since I only analyzed on four years, it is hard to delve into more insights.
However, this model can serve as a useful tool for capturing the underlying pattern of the bilateral relations well.

5. Discussion

The first limitation comes from the data itself. Binary data contains very little information. From Figure [I3]
the credible interval is relative wide, showing great uncertainty on the estimation. From Figure O] even under
reasonable specified hyperparameters, the credible interval is still wide. Actually, my data comes from count data
then I transformed it to binary data. The reason is Gibbs sampling is unavailable for Poisson regression. Also

*“In July 2009, leaders of China and Taiwan exchange direct messages for the first time in more than 60 years. I am not sure whether
this would take the focus of China, leading to decrease for the activities with other countries.



the characteristics of the dataset suggest it is inappropriate to use normal distribution to approximate the Poisson
distribution. This is because around 77.2% of the entries are zero, and over 96.8% of the entries are less than 20.
Modeling the count data directly and applying other sampling methods, such as Metropolis-Hastings, for posterior
computation may be a better idea.

The second limitation is that too many parameters may bring overfitting of the model. As I shows in the ta-
ble |1, a large value of H* may introduce too many parameters leading to overfitting. To avoid overfitting, I
leave one matrix out to take the performance of prediction into consideration. Another method to avoid overfit-
ting is to set a shrinkage prior to allow learning from the dimension of the latent factor (Durante and Dunson,
2014 [3]). Specifically, for x;5, a shrinkage parameter 7 is added to learn the dimension of the latent space.
(@in(t1), -, zin(tn))T ~ N(0,7; 'ey), where 7, = th:1 v, v ~ Ga(ai, 1),y ~ Ga(ag,1),l < 2. 1conducted
several simulations showing the shrinkage parameter works well.

The third limitation is computation complexity. Compared to FFBS sampling we learned from class, the Gibbs
sampling is time consuming, which restricts the application of the model in large-scale networks or networks
evolving in a relative long time period. Other sampling methods or algorithms are desired to ease the computation.
For example, maybe we could consider using a series with Markovian properties to approximate the series, or
approximating the posterior distributions directly. In addition, we should take computation into consideration if
we want to extend it to a more complex model, such as allowing learning of the parameters ¢, s, considering AR(p)
and TVAR models, and adding node-specific addictive effect.

The fourth limitation is the identification of multiplicative effect. If we focus on inference on 7, we do not need
to worry about this issue. However, evolving patterns of latent factors will provide us more insights on the dynamic
networks. Also, learning from the parameters ¢, s and other model extensions are based on the identification of
the multiplicative effects. In latent space model for a static network, Hoff et al. (2002) proposed Procrustean
transformations. I need to explore whether I could extend this method for dynamic evolving network. And the
computation is still a issue here. Another method is to add restriction and use informative priors. How to set the
prior is an interesting topic worth exploring.

In addition, it will be interesting to adopt the “emulation” idea. In this project, I consider model the dynamic
network from a node’s perspective. Specifically, I model the characteristics of nodes in the network and consider
the probability of an edge to be a function of paired nodes. Another modeling process is to fit the edges directly
(Chen et al., 2018 [2])). For example, consider the time series of each edge between paired nodes separately, and
fit each time series using DGLM model or others, then apply FFBS sampling for parameter estimation and map
the model back to latent space model E} This could be my direction in following updates of the project.
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3Thanks for the advice from Professor Mike West
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