No More "Excuses" for UNC:

A Hierarchical Model Evaluating Pediatric Heart Surgical Programs

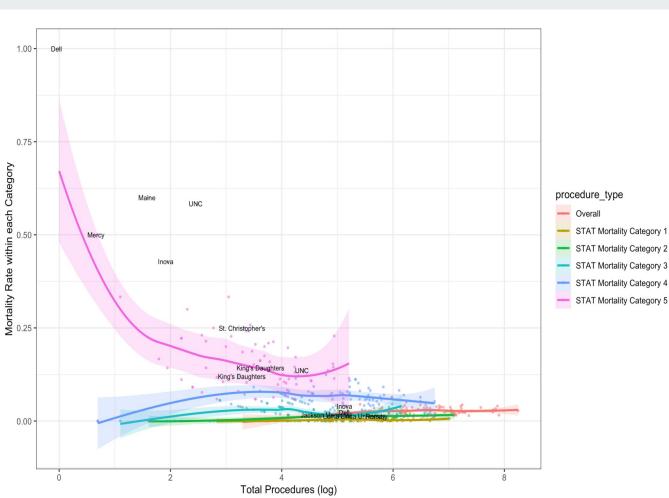
Group: Yunran Chen, Yiwei Gong, Lingxi Song, Siqi Fu

Motivation

The New York Times exposed the **extremely high mortality rate** of surgical program of UNC Children's Hospital, **especially for complex surgeries**.

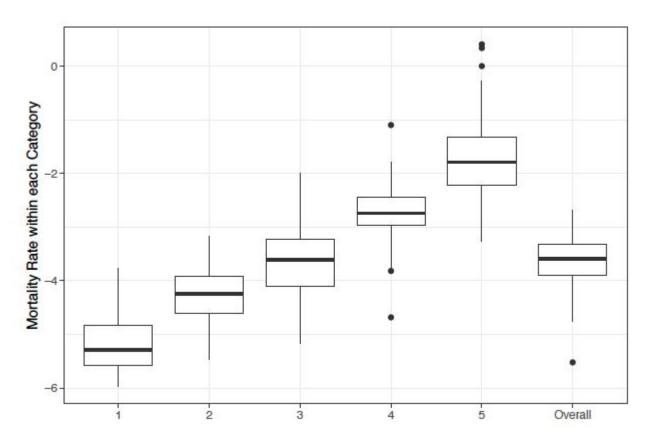
UNC argued larger programs generally have lower mortality rate and judging based on mortality rate is unfair to small programs.

- Does UNC program really behave badly?
- What about other programs?
- How can we evaluate the complex surgical programs in a scientific way based on these mortality rates?

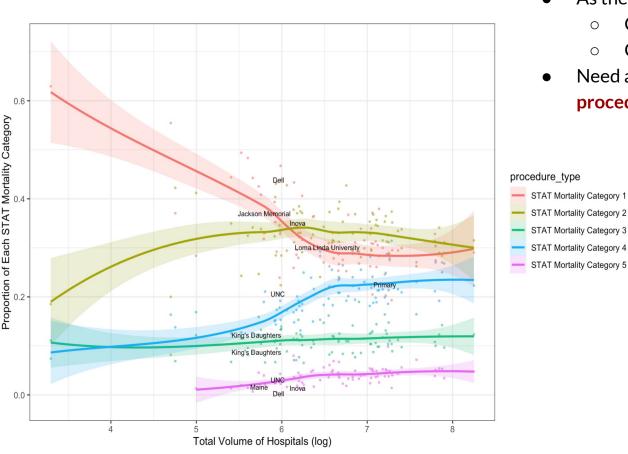

Introduction

- Unavailable influencing factors
- Volume-based performance of each hospital
 - Large variance of low-volume hospitals.
 - 64% hospitals do < 250 procedures
 - decrease the power of statistical results
 - Lower mortality rate of high-volume hospitals
 - more resources allocation
 - valuable experience of teams
 - high reputation attract patients)
- Case-mix pattern of each hospital
 - Distinct mortality rate of different procedure complexity
 - Proportion of procedure type varies across hospitals, related to volume

Goal


- Build a hierarchical model allowing information sharing, but share it wisely
- Estimate expected mortality rate addressing the aforementioned characteristics
- Evaluate heart surgery program based on O/E, benefiting patients' decision making and supervising the quality of programs
- Evaluate the performance of UNC

EDA: Volume-based performance of each hospital


- Mortality rate decreases significantly with increase of total procedures for category 5.
- Variance decreases with increase of total procedures.
- UNC has higher mortality rate especially for category 4 and 5.
- Need a volume-based shrinkage

EDA: Ordinal Effects of Procedure Complexity

- More complex procedure has a higher mortality rate and a longer tail.
- Need fix effects + heavy-tail prior

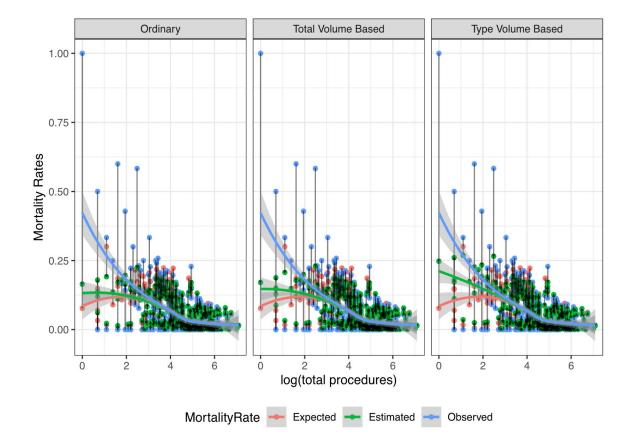
EDA: Case mix of each hospital

- As the volume increases,
 - Category 1: a significant decrease
 - Category 2+4: a significant increase
- Need a shrinkage based on volume of procedure type

Model: Bayesian hierarchical model

 $logit(P(Y_{hi}=1)) = eta_0 + eta_1 I(Type2)_{hi} + eta_2 I(Type3)_{hi} + eta_3 I(Type4)_{hi} + eta_4 I(Type5)_{hi} \ + eta_5 \log(TypeVol)_h + b_{0h} + b_{1h}\log(TypeVol)_{hi} \ i: ext{ individual procedure } i$

h: hospital h


Typek: STAT Mortality Category k

Y = 1: failure of procedure

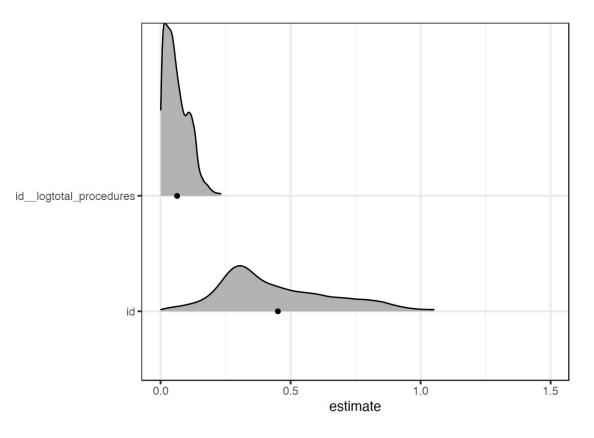
Priors:

$$\beta_0 \perp \beta_1 \perp \beta_2 \perp \beta_3 \perp \beta_4 \perp \beta_5 \sim T_3(0, 10)$$
$$\begin{pmatrix} b_{0h} \\ b_{1h} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \tau_{11} & \tau_{12} \\ \tau_{12} & \tau_{22} \end{pmatrix})$$
$$\tau_{11}, \tau_{22} \sim HC(0, 5)), \text{ and } \tau_{11}, \tau_{22} \sim LKJ(1)$$

Model Evaluation

- Shrink the observed mortality rates towards the expected mortality rates, more shrinkage on low-volume hospitals
- Our model shrinks towards more reasonable direction, matching the fact mortality rates decrease as volumes increase
- Out model performance slightly better in terms of waic.

(O:1580>V:1578>TV:1570)


Estimation

	Estimate	Est.Error	1.95CI	u.95CI
Intercept	-4.87	0.31	-5.44	-4.25
procedure_typeSTATMortalityCategory2	1.46	0.12	1.22	1.70
procedure_typeSTATMortalityCategory3	1.76	0.14	1.47	2.03
procedure_typeSTATMortalityCategory4	2.93	0.12	2.69	3.15
procedure_typeSTATMortalityCategory5	3.56	0.16	3.25	3.85
logtotal_procedures	-0.15	0.05	-0.26	-0.05
sd(Intercept)	0.45	0.23	0.10	0.95
sd(logtotal_procedures)	0.06	0.05	0.00	0.17
cor(Intercept,logtotal_procedures)	-0.50	0.52	-0.97	0.82

Table 1: Point Estimate and CI for Random and Fixed Effect

- All the terms included are significant.
- The odds of the mortality rate of type 2,3,4,5 procedure is 3.4 to 5.5, 4.4 to 7.6, 14.7 to 23.4 times of that of type 1 procedure.
- increasing # of a certain type of procedure by 10% will decrease the odds of mortality rate by 0.5% to 2.4%

Estimation

- Clear heterogeneity across hospitals
- A large number of hospitals have higher mortality rate compared to a typical hospital
- Less heterogeneity across potential effect of type volume of hospitals -- may suggest similar learning rate from experience

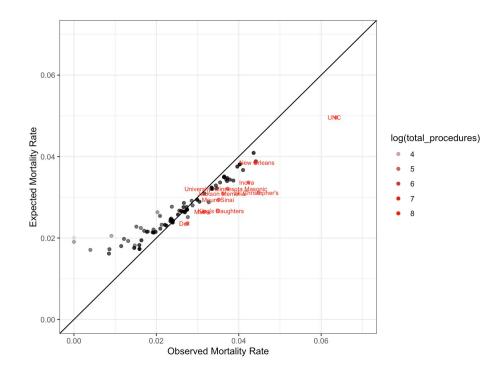

Inference

Table 2: Top Ten Best Hospital

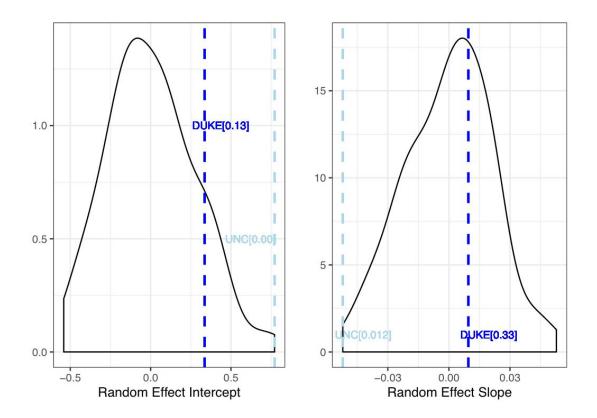

hospital_name	OE	OE_l	OE_u	star
Geisinger Medical Center	0.000	0.000	0.000	3
University of Kentucky Healthcare	0.000	0.000	0.000	3
Connecticut Children's Medical Center	0.233	0.144	0.450	3
Nemours Children's Hospital	0.442	0.260	0.940	3
Penn State Children's Hospital	0.499	0.334	0.846	3
UF Health Shands Children's Hospital	0.525	0.353	0.880	3
University of Maryland Children's Hospital	0.614	0.416	1.016	2
Helen DeVos Children's Hospital	0.636	0.433	1.014	2
University of Wisconsin Hospitals and Clinics	0.665	0.434	1.103	2
Mercy Medical Center	0.683	0.440	1.136	2

Table 3: Top Ten 'Killing' Hospital

hospital_name	OE	OE_l	OE_u	star
St. Christopher's Hospital for Children	1.440	0.923	2.422	2
Children's Hospital of the King's Daughters	1.305	0.794	2.165	2
UNC Children's Hospital	1.282	0.903	1.930	2
Inova Children's Hospital	1.259	0.872	1.916	2
Mount Sinai Hospital	1.196	0.832	1.810	2
Maine Medical Center	1.196	0.732	2.064	2
Jackson Memorial Hospital	1.169	0.786	1.842	2
Dell Children's Medical Center	1.164	0.777	1.878	2
University of Minnesota Masonic Children's Hospital	1.161	0.807	1.744	2
Children's Hospital New Orleans	1.142	0.832	1.609	2

UNC Program Evaluation: No More "Excuses" for UNC

- UNC is ranked as bottom 3 based on O/E score
- The probability of UNC ranked in the bottom 5 based on O/E scores is 0.86 (Duke is 0.23)
- Extreme value of random effect and random intercept
 - more likely to fail a procedure than a typical hospital
 - less likely to learn from experience than a typical hospital.

- Excellent performance on addressing the volume-based shrinkage and considering case mix problem.
- Fits the data well as shown by model diagnosis and comparison among alternative model.
- Valuable for benefiting patients' decision making and supervising the quality of each program.
- UNC should suspend complex heart procedures
- Suggest:
 - Merge competing programs in a nearby neighborhood
 - Enhance the patient referrals to nearby better programs