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Introduction

Since New York Times’s exposed the scandal of UNC Hospital’s pediatric cardiovascular surgical
program, considerable attention has been drawn to the evaluation of hospitals’ performance on
complex surgical programs. A common evaluation system is based on the ratio of observed and
expected mortality rate (O/E score), where higher ratio suggests worse performance of a hospital.

Investigating surgical programs is difficult for numerous elements may influence patient complica-
tions. A success of surgical procedure require efforts from surgeons, anesthesiologists, intensive
care doctors, and support staff as well as the condition of the patient themselves. A mistake on any
of these parts may lead to issues and even deaths. Unfortunately, these elements are unavailable
and most of them can hardly be quantified, which brings high variance on the mortality rate across
hospitals and even within the same hospital.

Building a hierarchical model to borrow information across hospitals can make effective use of
the provided information. However, such information sharing needs to be conducted in a clever
way due to (1)the volume-based performance of each hospital; (2) the case-mix pattern of each
hospital. We aim to provide expected mortality rate well addressing the aforementioned problems
and construct an interval estimator of the O/E score (the ratio of observed and expected mortality
rate) to evaluate pediatric heart surgery programs, which may benefit patients’ decision making
and supervise the quality of each program.

We build a Bayesian hierarchical model based on the dataset from STS1, which includes 75999 cases
for 83 hospitals mortality data of pediatric heart surgery of neonates, infants and children from
2015-2018. It includes the number of observed death and total procedures by the STAT category of
complexity. And it also provides expected mortality rate adjusted by procedural and patient-level
factors for each STAT category of complexity within each hospital, which is based on STS CHSD
mortality risk model2.

Exploratory Data Analysis

Most hospitals have relative small volume and the volume is related to the mortality rate of each
hospital. Since patients tend to choose programs with high volume, around 64% hospitals do less
than 250 procedures per year, which is a relatively small number. Figure 1 shows the scatter plot
of observed versus expected mortality rate.3 As number of procedures increases, the mortality rate
in category 5 decreases significantly, the variance of mortality rate decreases for all 5 categories.
A small volume may have two effects: Firstly, surgical teams cannot get enough practice to keep
their high skills. Less resources will be allocated to the program to ensure the patients’ recovery.
Therefore, a lower volume of surgeries is related to a higher mortality rate. Secondly, low volume
decreases the power of statistical results, which will cover potential problems. A shrinkage effect is
needed to allow us borrow information across hospitals but we need to take care of volume effects

1https://publicreporting.sts.org/chsd-exp
2https://publicreporting.sts.org/chsd-risk-model
3We marked the outliers of STAT Mortality Category 1-5, which are 1.5×IQR above the 75 percentile and below

25 percentile
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on the mortality rate, which suggests the information should be shared only within the hospitals
with similar volumes.
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Figure 1: Category-specific Observed Mortality Rates versus Number of Total Procedures

The mortality rate of different procedure complexity is clearly different as shown in Figure 2.
Procedures with a higher level of complexity have a higher mortality rate and longer tail (especially
for category 5), which suggest introducing a fix effect for procedure category and setting a relative
heavy-tail prior on these coefficients.
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Figure 2: Ordinal Effects of Procedure Complexity

There exists case mix within each hospital. Figure 3 shows the proportion of categories of each
hospital versus the total volume of the hospital. The hospital with high reputation tends to attract
more complex cases. We see a significant decline of category 1 procedures and increase of category
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2 and 4 category procedures. Therefore, the shrinkage should be based on the volume under each
category instead of total volume.

UNC Children...s Hispital

Dell   

Jackson Memorial 

Loma Linda University     

Primary  

Inova  

    King's Daughters
    King's Daughters

UNC Children...s Hispital

Dell   
UNC Children...s Hispital

0.00

0.25

0.50

0.75

1.00

4 5 6 7 8
Total Volume of Hospitals (log)

P
ro

po
rt

io
n 

of
 E

ac
h 

S
TA

T
 M

or
ta

lit
y 

C
at

eg
or

y

procedure_type

STAT Mortality Category 1

STAT Mortality Category 2

STAT Mortality Category 3

STAT Mortality Category 4

STAT Mortality Category 5

Figure 3: Case Mix: number of total procedures vs proportion of STAT categories

Model

In order to address the aforementioned challenges, we apply a Bayesian hierarchical model, intro-
ducing fix effects of procedure type with different priors for distinct categories and considering a
shrinkage based on the logarithm of volume within each type. For the shrinkage effects across
hospitals, we assume hospitals with similar number of type-specific volume have similar mortality
and thus can share information together. Therefore, we consider a random intercept and random
effect of log(total_procedure) in our model. We introduce fix effects of procedure types with
heavy-tail t-distribution. Specifically, we consider t distribution with 10 and 3 degree of freedom
. See Figure 4 for comparison across different shrinkage. We also compare models under different
priors, which suggests the resulting estimator is not sensitive to prior settings (See Appendix for
more details).

logit(P (Yhi = 1)) = β0 + β1I(Type2)hi + β2I(Type3)hi + β3I(Type4)hi + β4I(Type5)hi

+ β5 log(TypeV ol)h + b0h + b1h log(TypeV ol)hi

where i refer to procedure i, h refer to the hospital h. Yhi = 1 indicate a failed procedure i (a death)
in hospital h, I(Typek)hi indicates STAT Mortality Category k of each procedure i in hospital h,
and log(TypeV ol)h represents the logarithm of type-specific volume. We assume β0 ∼ T3(0, 10) ⊥
β1 ∼ T3(0, 10) ⊥ β2 ∼ T3(0, 10) ⊥ β3 ∼ T3(0, 10) ⊥ β4 ∼ T3(0, 10) ⊥ β5 ∼ T3(0, 10), and consider(

b0h

b1h

)
∼ N(

(
0
0

)
,

(
τ11 τ12
τ12 τ22

)
)(i.i.d), where correlated matrix comes from LKJ(1) and variances

come from half-cachy prior (0, 5).

3



Our model shrinks towards the right direction. Figure 4 shows model comparison between different
shrinkage across hospitals, where red, blue and green indicate the type-specific expected mortality
rate, x-axis represents the type-specific volume. We can see all the models shrink the observed
mortality rates towards the expected mortality rates and hospitals with a lower type-specific volume
were shrunk more. However, the ordinary shrinkage model, total volume-based shrinkage model
and the model provided by STS seem to shrink too much since estimated mortality rates tend to
increase as type-specific volume increases when the type-specific volume is relatively small, which
is contradict to the intuition and the related scientific studies. In contrast, based on our model,
the estimated mortality rates tend to decrease as type-specific volume increase and remain stable
if type-specific hit a relative large value. And our model performs slightly better in terms of waic
(1569.509), compared to ordinary shrinkage model (1580) and total volume-based shrinkage model
(1578).
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Figure 4: Comparison of Different Shrinkage Effects

Estimation and Inference

Table 1 shows estimations of our model parameters. For a typical hospital with only 1 type 1
procedure, the odds of mortality rate for type 1 procedures is about 0.4% to 1.4%. Holding the
type-specific volume constant, for a typical hospital, the odds of the mortality of type 2 procedure
is 3.4 to 5.5 times of that of type 1 procedure. Similarly, the odds of the mortality of type 3,4,5
procedure is 4.4 to 7.6, 14.7 to 23.4 compared to that of type 1 procedure. For a typical hospital,
increasing the number of a certain type of procedure by 10% will decrease the odds of mortality
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rate by 0.5% to 2.4% holding the number of procedures at the same risk level as constant. The
variation across hospital are large and has a long right tail suggesting a large number of hospitals
have high mortality rate. As shown in Figure 5, the variation of the potential effect of type-specific
volume on type-specific mortality rate concentrates around 0. The two-modal shape may suggest
a small proportion of hospitals learn from experience but most hospitals do not.

Referred from the credible interval, both the effects of procedure type and type-specific volume
are significantly non-zero; a clear heterogeneity across hospital exists. We also fit a model with
interaction term between procedure type and type-specific volume, which shows our model per-
forms better based on since the logarithm of Bayes factor (0.85) is greater than 0.5, suggesting a
substantial improvement and confidence inverals of all interaction terms include 0.

Table 1: Point Estimate and CI for Random and Fixed Effect

Estimate Est.Error l.95..CI u.95..CI
Intercept -4.87 0.31 -5.44 -4.25
procedure_typeSTATMortalityCategory2 1.46 0.12 1.22 1.70
procedure_typeSTATMortalityCategory3 1.76 0.14 1.47 2.03
procedure_typeSTATMortalityCategory4 2.93 0.12 2.69 3.15
procedure_typeSTATMortalityCategory5 3.56 0.16 3.25 3.85
logtotal_procedures -0.15 0.05 -0.26 -0.05
sd(Intercept) 0.45 0.23 0.10 0.95
sd(logtotal_procedures) 0.06 0.05 0.00 0.17
cor(Intercept,logtotal_procedures) -0.50 0.52 -0.97 0.82
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Figure 5: Density plot of Variance Estimation

We futher applied our model to rank hospitals based on the ratio of observed to expected mortality
rate (O/E score) and provide stars based on 95% credible intervals of O/E scores. Table 2 and
Table 3 list the top and bottom 10 hospitals.
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Table 2: Top Ten Best Hospital

hospital_name OE OE_l OE_u star
Geisinger Medical Center 0.000 0.000 0.000 3
University of Kentucky Healthcare 0.000 0.000 0.000 3
Connecticut Children’s Medical Center 0.233 0.144 0.450 3
Nemours Children’s Hospital 0.442 0.260 0.940 3
Penn State Children’s Hospital 0.499 0.334 0.846 3
UF Health Shands Children’s Hospital 0.525 0.353 0.880 3
University of Maryland Children’s Hospital 0.614 0.416 1.016 2
Helen DeVos Children’s Hospital 0.636 0.433 1.014 2
University of Wisconsin Hospitals and Clinics 0.665 0.434 1.103 2
Mercy Medical Center 0.683 0.440 1.136 2

Table 3: Top Ten Killing Hospital

hospital_name OE OE_l OE_u star
St. Christopher’s Hospital for Children 1.440 0.923 2.422 2
Children’s Hospital of the King’s Daughters 1.305 0.794 2.165 2
UNC Children’s Hispital 1.282 0.903 1.930 2
Inova Children’s Hospital 1.259 0.872 1.916 2
Mount Sinai Hospital 1.196 0.832 1.810 2
Maine Medical Center 1.196 0.732 2.064 2
Jackson Memorial Hospital 1.169 0.786 1.842 2
Dell Children’s Medical Center 1.164 0.777 1.878 2
University of Minnesota Masonic Children’s Hospital 1.161 0.807 1.744 2
Children’s Hospital New Orleans 1.142 0.832 1.609 2

Evaluation on UNC Program

As a response to the New York Times’ investigation in May 2019, the UNC Health Care announced
to suspended complex heart surgeries (STAT 4 and 5 cases), which have higher mortality rates
compared to other hospitals shown in the dataset. However, it argued in a published report that
larger programs have lower morbidity and mortality in general while reporting mortality rate as in
percentages doesn’t do fair to small market share hospitals. UNC has on average 98 pediatric cardiac
surgeries (STAT 1-5) annually, which is relatively small compared to the ideal range [100,150]
suggested by the American Board of Thoracic Surgery (ABTS)4. We aim to utilize our model to
evaluate the UNC program based on the adjusted estimator.

As Table 3 shows, UNC is ranked as bottom 3 based on O/E score. We further quantify the
ranking based on posterior samples. The probability of UNC ranked in the bottom 5 based on
O/E scores is 0.86 (Duke is 0.23), suggesting UNC have higher O/E scores compared to other
hospitals. We further compare the posterior mean of random effects of UNC to those of other
hospitals, which is shown in Figure 6. The light blue indicate estimated random effects of UNC

4https://www.abts.org
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children’s Hospital(b0,UNC and b1,UNC in the model), and we also marked Duke University Hospital
by duke blue as a reference. As illustrated in this plot, the point estimate b0,UNC and b1,UNC are
relatively extreme, suggesting UNC is more likely to fail a produre than a typical hospital and
less likely to learn from experience than a typical hospital. Thus we are not surprising to see it
nominated as the 10 “killing” hospitals.
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Figure 6: distribution of estimated random effects

Conclusion

Our model show excellent performance especially on addressing the volume-based shrinkage and
considering case mix problem. Our model fits the data well as shown by model diagnosis and
comparison among alternative models. Our model is valuable for benefiting patients’ decision
making and supervising the quality of each program. As suggested by our model, UNC performs
worse compared to other programs which is also validated by the investigation of New York’s Times.
Apart from UNC hospitals, other hospitals in the bottom 10 list are also needed attentions. Since a
success of complex surgery require efforts from both dedicated surgical team and recovery units, a
more practical improvement is to merge competing programs in a nearby neighborhood for optimal
resource allocation. For a small program unable to handle complex surgeries, enhance the patient
referrals to nearby better programs.
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Appendix

Sensitive Analysis on Prior Settings

To futher improve our model, we set several different priors based on the model6, and we compared
the waic and bayes_ratio of them. We built 4 models for 3 different priors:
1. In model61: we assume b0i and b1,i are independent.
2. In model62: we set tau11 and tau22 follow cauchy(0, 1). The default prior is cauchy(0, 5). We
set the smaller varaince to make the prior more imformative.
3. In model 63: For the risk levels 1 2 and 3, we decreased the varaince of t-distribution from 10
to 1 and increased the degree of freedom from 3 to 8 to make the prior more informative.
By comparing the waic table below, we fond that both model6 has smaller waic value than
model61 and model62, and has very similar waic value with model63.
From the Bayes_ratio table, we found that our model6 is better than model61, model63, and only
model62 is a little superior than model6, but it is at the “not worth more than a bare mention”
level.
Compared two criterions, we found that the model result is not sensitive to the prior, so we decided
use the default prior and use model6 as our final model.

Table 4: Bayes Factor comparision

model BF
model61 $ model6 -0.8496145
model62 & model6 0.2374132
model63 & model6 -6.7481922
model64 & model6 -6.6177451

Table 5: waic comparision

models waic
model63 1569.069
model64 1569.069
model6 1569.509
model62 1569.823
model61 1571.926
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