Relation between Drinking and Smoking to Academic Performance

Yunran Chen, Brian Kundinger, Rihui Ou

Introduction

- Data: 2001 College Alcohol Study, 10904 observations respectively
- Goal: How do drinking and smoking affect academic performance?
- Challenges: High correlation between individual variables (survey data)
- Solution: latent factor based model
- Model:
 - Structural Equation Model (SEM): studying interrelationships among observed and latent variables
 - Build SEM for 2001

Data Preprocessing

- Obtain the complete cases based on questions of interest with no screening (keep 87.5%)
- Impute the NA's based on the relation to other questions
- Create problem_drinking counting how many times a student cause problems because of drinking

Pick variables

- Academic (ordinal response variable): F5 (GPA)
- Drinking:
 - ► C7: Self-identified alcohol use (abstainer/former drinker/...)
 - C11: Frequency of drinking
 - C12: Amount of alcohol consumed when drinking
 - problem_drinking (C17): how often has your drinking caused you to ...
 - ► G15,G16,G17: Alcohol use in family
- Smoking:
 - E3: Frequency of mmoking
 - ► E4: Average number of cigarettes per day
 - ▶ E8: Social smoking (alone vs. with friends)
 - ▶ E11-12: How often exposed to smoking
- Background:
 - Fraternity/Sorority: A5,A6,A8d
 - ► Gender,Race: A2,G3a-e

EDA: Relation between drinking behavior and GPA

 Students with higher GPAs (A coded as 1) show lower alcohol use

EDA: Relation between smoking behavior and GPA

Similarly, students with high GPAs show less smoking, but the correlation is less clear (E4 shows many students who smoke more than one pack a day with high GPA)

Heavier use of alcohol and cigarettes is related to

- Member of a fraternity/sorority
- Live in fraternity/sorority
- Think fraternity/sorority life is important
- Mother/father drinks
- Family accepting of heavy drinking

Model

 $m{y} = m{
u} + m{\Lambda}m{\eta} + m{\epsilon} \ m{\eta} = m{lpha} + m{B}m{\eta} + m{\zeta}$

- Λ is the factor loading matrix,
- η are the latent factors that are not observable, e.g., drinking tendency,
- ν and α are intercepts for the observational and latent variables respectively,
- ϵ and ζ are residuals that are normally distrubuted.
- B measures the conditional dependency across latent variables. If B_{ij} ≠ 0, then η_i is a child of η_j, i.e., there exists a directed edge from factor j to i.

For the ordinal questionnaire data, the continuous y is assumed to be a normal latent variable that underlies the observable questionnaire response z, where z = m if $y \in [\tau_{m-1}, \tau_m]$ and τ is the threshold.

Model

Results

Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)
drink =~				
c7	1.000			
c11	0.936	0.012	77.808	0.000
c12	0.855	0.013	65.463	0.000
problem_drnkng	1.258	0.029	43.175	0.000
g15	0.248	0.014	18.353	0.000
g16	0.189	0.014	13.326	0.000
g17	0.057	0.014	4.183	0.000
smoke =~				
e3	1.000			
e4	0.962	0.003	367.384	0.000
e8	1.016	0.012	86.737	0.000
e11	0.050	0.007	6.962	0.000
e12	0.011	0.002	5.066	0.000
greek =~				
a5	1.000			
a6i	0.067	0.008	8.911	0.000
a8d	-0.880	0.043	-20.553	0.000

Results

Regressions:				
	Estimate	Std.Err	z-value	P(> z)
academic ~				
drink	0.134	0.017	7.960	0.000
smoke	0.085	0.016	5.190	0.000
greek	-0.002	0.017	-0.096	0.924
male	0.200	0.022	9.047	0.000
white	-0.364	0.041	-8.919	0.000
black	0.235	0.055	4.238	0.000
asian	-0.150	0.056	-2.690	0.007
native_americn	-0.008	0.138	-0.058	0.954
drink ~				
greek	0.218	0.037	5.836	0.000
smoke ~				
greek	0.093	0.024	3.943	0.000
drink ~				
smoke	0.514	0.011	45.783	0.000

Interpretation

- Latent Variables: All variables have coefficients that align with expectations, and all have significant p-value. We trust these variables constitute latent variables.
- Regressions: Drinking and smoking associated with lower GPA (A is coded as 1)
- Greek life not significant directly on academic performance, but highly correlated with drinking.

Discussion

- Data imputation-probably missing not at random
- Comparison between 1997 to 2001 to study the trend
- Explore effect of greek life more rigorously through Mediation Analysis