
Variational Inference on Latent Dirichlet Allocation

Yunran Chen
Department of Statistical Science

Duke University
yunran.chen@duke.edu

Junwen Huang
Department of Statistical Science

Duke University
junwen.huang@duke.edu

Abstract

One of the core problems of modern statistics is to approximate hard-to-compute probability densities. This prob-
lem is especially important in Bayesian statistics for posterior density approximate under complex hierarchical
structure setting (the one that includes latent variables). Variational Inference (VI) is a method that approx-
imates probability densities through optimization. VI is faster and easier to scale to large data compared to
classical methods, such as MCMC sampling. Here we implemented variantional EM algorithm on Latent Dirich-
let allocation (LDA). Latent Dirichlet allocation (LDA) is a three-level hierarchical Bayesian model for collections
of discrete data, such as text corpora. We present Variational EM on LDA model based on Blei et al.,2003 [2].
We present detailed introduction and proof 1, detailed psudocode, and a package (VIonLDA)2. We also present the
algorithm optimization based on vectorizaiton version which can be extended to not only one-hot-coding matrix.
Then we provide an application on a real dataset and get reasonable result. In addition, we present detailed VI
algorithm for smoothing LDA. At last, we provide a detailed discussion on ideal data structure.

Keywords: probability density approximation, Bayesian hierarchical model, Variational EM, Latent Dirichelet
Allocation

1. Introduction

We reproduce the paper Latent Dirichlet Allocation (LDA) by Blei et al. [2]. The reason for choosing this partly
comes from interests on text mining. Furthermore, algorithm for efficient approximate for intractable posterior
distribution inference and parameter estimation is super useful, which should be inside the statistician’s toolbox.
Here follows a brief introduction of variational inference (VI), including the basic problems it address, the possible
applications, its advantages and disadvantages, the key idea and mathematical background. [1] Then we would
give a brief introduction to LDA, including the main goal, advantages and mathematics setting.[2] In section 2,
we introduce a thorough illustration on how to apply VI on LDA model and provide corresponding pseudocode.
Notice there are typos in the appendix and pseudocode given in the orginal paper.[2]. In section 3, we generate data
from LDA. Based on simulation data, we compare the performance of optimization. We tried optimization on data
structure, vectorization, JIT and parallel. Then we would compare our best performance algorithm (vectorizaiton

1including point out an typo in the original paper.
2https://github.com/YunranChen/VIonLDA.git

1

version) with lda package in sklearn. In section 4, we applied the algorithm to simulated data sets, showing the
property for this algorithm. In section 5, we applied the algorithm to real datasets and get reasonable result.

1.1. Variational Inference

One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This
problem is especially important in Bayesian statistics when posterior is not easy to compute under complex hier-
archical structure including latent variables.

Generally, consider a joint density of latent variables z = z1:m and observations x = x1:n.

p(z,x) = p(z)p(x|z)

In complex Bayesian models, the computation for posterior p(z|x) often requires approximate inference. The
main advantage of VI is efficiency. For large data sets or very complex models, VI is much faster than a simple
MCMC algorithm. For mixture models where Gibbs sampling is not an option, VI may perform better than a more
general MCMC technique. However, VI is not yet well understood. VI generally underestimates the variance of
the posterior density. The relative accuracy of VI and MCMC is still unknown. Several lines of empirical research
have shown that VI does not necessarily suffer in accuracy. Still, VI is a valuable tool especially for Bayesian.

The goal of VI is to approximate a conditional density of latent variables given observed variables. The key idea
is to use optimization.

First, posit a family of approximate densities L. This is a set of densities over the latent variables. The choice of
L should be flexible enough meanwhile simple enough for efficient optimization. Then, find the member of that
family that minimizes the Kullback-Leibler(KL) divergence to the exact posterior.

q∗(z) = argminq(z)∈L)KL(q(z)||p(z|x))

where

KL(q(z)||p(z|x)) = Eq[logq(z)]− Eq[logp(z|x)]

Because we cannot compute the KL, we optimize an alternative objective that is equivalent to KL. We call this the
evidence lower bound ELBO(q). Maximizing the ELBO is equivalent to minimizing the KL divergence.

ELBO(q) = Eq[logp(z,x)]− Eq[logq(z)]

Finally, approximate the posterior with the optimized member of the family q∗(·).

The variational algorithm transfer the density approximate to an optimization problem. Here we could apply the
algorithm for optimization, such as gradient descent, Newton-Raphson method.

We would show the details for applying VI with the example of LDA model.

1.2. Lante Dirichlet Allocation

The main goal for LDA is to model collections of discrete data with proper underlying generative probabilistic
semantics and dimensionality reduction. Based on the results from LDA model, we could achieve some basic text

2

mining such as classification, novelty detection, similarity and relevance judgment and so on.

Basically, LDA is a three-level hierarchical Bayesian model. Due to its Hierarchical structure, it can achieve:

1. dimensionality reduction (using parameter with lower dimension);

2. proper underlying generative probabilistic semantics (hierarchical structure);

3. generalizes easily to new documents (Dirichlet prior to allow positive probability).

Here we define the following terms:

1. A word is the basic unit of discrete data, with one-hot encoding. Specifically, w is a V × 1 vector such that
wv = 1 if the word is exactly v and wu = 0 for u 6= v.

2. A document is a V ×N matrix w = (w1, w2, ..., wN) with the word vector as each column.

3. A corpus is a collection of M documents denoted by D = {w1,w2, ...,wM}
4. A topic is a k × 1 vector such that zt = 1 if a word is considered to be topic t and zs = 0 for s 6= t.

LDA assumes the following generative process for each document w in a corpus D:

1. Choose N ∼ Poisson{ξ}
2. Choose θ ∼ Dir(α)

3. For each of the N words wn:

Choose a topic zn ∼Multinomial(θ)

Choose a word wn from p(wn|zn, β), a multinomial probability conditioned on the topic zn

Here follows simplifying assumptions:

1. Words and documents are exchangeable. (i.e. conditional i.i.d.)

2. Dimensionality k of the Dirichlet distribution is assumed known and fixed.

3. w ∼Multinomial(βT z), where β is k × V matrix βij = p(wj = 1|zi = 1).

4. β and α are fixed quantities need to be estimated.

5. Poisson assumption is not critical to anything. Here we consider N as constant instead of random variable.

Given the parameters α and β, the joint distribution of a topic mixture θ, a set of N topics z, and a set of N words
w is given by:

p(θ, z,w|α, β) = p(θ|α)

N∏
n=1

p(zn|θ)p(wn|zn, β) (1)

The marginal distribution of a document is:

p(w|α, β) =

∫
p(θ|α)(

N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, β))dθ (2)

3

Figure 1. Variational Inference Graph on LDA

The probability of a corpus:

p(D|α, β) =
M∏
d=1

∫
p(θd|α)(

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β))dθd (3)

The hierarchical structure of LDA is shown in figure ??. The parameters α and β are corpus-level parameters,
assumed to be sampled once in the process of generating a corpus. The variables θd are document-level variables,
sampled once per document. Variables zdn and wdn are word-level variables and are sampled once for each word
in each document.

1.3. Inference and Parameter Estimation

The key inferential problem is computing posterior distribution:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
(4)

Due to the coupling between θ and β in the summation over latent topics, p(w|α, β) is intractable.

p(w|α, β) =
Γ(

∑
i αi)∏

i Γ(αi)

∫
(
k∏
i=1

θαi−1
i)(

N∏
n=1

k∑
i=1

V∏
j=1

(θiβij)
wj

n)dθ (5)

However, due to the intractable posterior distribution, a wide variety of approximate inference algorithms can be
considered, including Laplace approximation, variational approximation, and Markov chain Monte Carlo (Jordan,
1999). Here we mainly implemented variational inference. Specifically, we applied convexity-based variational
algorithm by Blei et al. [2]. For parameters estimation, we implemented variational EM algorithm, inside also
including Newton-Raphson Method. More details see section 2.

2. Variational Inference on LDA

First, we need to posit a tractable family. Second, we transfer it to an optimization problem to maximizing the
ELBO. Third, we find the optimal variational parameters. Last, we approximate the posterior with the optimized
parameters and do parameter estimation.

4

2.1. Variation Inference

To obtain a tractable family of lower bounds, consider dropping the nodes w,β, and the edge between θ and z. See
figure 1. Then we get the family on latent variables, characterized by free variational parameters:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (6)

Where θ ∼ Dir(γ), zn ∼Multinomial(φn).

Here we set up the optimization problem by minimizing the Kullback-Leibler(KL) divergence between the varia-
tional distribution and the true posterior p(θ, z|w, α, β)

(γ∗, φ∗) = argmin(γ,φ)D(q(θ, z|γ, φ)||p(θ, z|w, α, β))

which equals to maximizing the evidence lower bound ELBO

ELBO(γ, φ;α, β) = Eq[logp(θ, z,w|α, β)]− Eq[logq(θ, z|γ, φ)] (7)

Notice, the ELBO can also be derived from Jensens inequality (log(Ex) ≥ E(log(x))) on the log likelihood
logp(w|α, β).

To get optimal φ∗ni, consider the item only include φni in ELBO and add restriction
∑k

i=1 φni = 1. We set up a
lagrangian:

ELBO[φni] + λn(
k∑
i=1

φni − 1)

Get the derivative with respect to φni, we have

φni ∝ βivexp(Ψ(γi)−Ψ(

k∑
j=1

γj)) (8)

where
∑k

i=1 φni = 1,Ψ is the first derivative of the logΓ which is computable via Taylor approximations.

To get optimal γ∗i , consider the item only include γi, which denote as ELBO[γi]. Get derivative of it and set it to
zero, we have

γi = αi +

N∑
n=1

φni (9)

Applied iterative fixed-point method, we get optimizing variational parameters (γ∗(w), φ∗(w)) given a document
and related density estimation

p(θ, z|w, α, β) ≈ q(θ, z|γ∗, φ∗)

5

2.2. Variational EM

To get parameter estimation α∗, β∗, we need to maximize the log likelihood of the data:

L(α, β) =
M∑
d=1

log(wd|α, β)

which is equal to maximize the summation of equation (7):

L(α, β) =

M∑
d=1

ELBO(γd, φd;α, β) (10)

To get the optimal β, consider the item only include β in L(α, β) and add restriction
∑V

j=1 βij = 1. We set up a
lagrangian:

L[β] +
k∑
i=1

λi(
V∑
j=1

βij − 1)

Get the derivative with respect to β, we have

βij ∝
M∑
d=1

Nd∑
n=1

φdniw
j
dn (11)

where
∑V

j=1 βij = 1.

To get optimal α, consider the item only include α, which denote as L[α]. Get derivative of it and set it to zero,
we have

gi =
∂L

∂αi
= M(Ψ(

k∑
j=1

αj)−Ψ(αi)) +

M∑
d=1

(Ψ(γdi)−Ψ(

k∑
j=1

γdj)) (12)

Hessian :

Hij =
∂L

∂αiαj
= −MΨ′(αi)δ(i, j) +MΨ′(

k∑
j=1

αj) (13)

where δ(i, j) = 1 whenj = i, otherwise δ(i, j) = 0. Note that the appendix of the paper gives a wrong derivation
of the Hessian and we have offered a corrected version above.

The derivative depends on α, we must use an iterative method to find the optimal α.

Due to the special form for Hessian matrix

H = diag(h) + 1z1T

6

, we could apply linear-time Newton-Raphson algorithm.

αt+1
i = αti − (H(αt)−1g(αt))i

= αti −
gti−ct
hti

where ct =
∑k

j=1 g
t
j/h

t
j

(zt)−1+
∑k

j=1(htj)−1

With

zt = MΨ′(
k∑
j=1

αtj)

hti = −MΨ′(αti)

Notice, there is a typo in the appendix in the original paper on equation 13.

7

2.3. Pseudocode

The original paper does not provide the initialization for α, β. Here we use random variable as our initialization.
3 Notice there is a typo in original paper. We made correction.

Input: a set of words in documents D = {w1, ...,wM}, number of topics k, initialization parameters
where w1isNd × V one-hot-encoding matrix

Output: Variational parameters φ, γ, parameters α,β
Initialize:β0

k ∼ Dirichlet(1);
α0
k ∼ Gamma(shape, scale);
φ0
ni := 1/k for all i and n;
γ0
i := αi +N/k for all i

while the ELBO has not converged do
repeat

for each document d = 1 to M do
for each word n = 1 to Nd do

for each topic i = 1 to k do
φt+1
ni := βtiwn

exp(Ψ(γti)−Ψ(
∑k

j=1 γ
t
j))

normalize φt+1
n to sum to 1.

end
γt+1
i := αti +

∑N
n=1 φ

t+1
ni

end
end

until φ,γ have converged;
for each vocabulary j = 1 to V do

βt+1
ij :=

∑M
d=1

∑Nd
n=1 φ

t+1
dniw

j
dn

normalize βt+1
ij to sum to 1.

end
zt+1 = MΨ′(

∑k
j=1 α

t
j)

ht+1 = −MΨ′(αt)

gt+1 = M(Ψ(
∑k

j=1 α
t
j)−Ψ(αt)) +

∑M
d=1(Ψ(γt+1

d)−Ψ(
∑k

j=1 γ
t+1
dj))

ct+1 =
∑k

j=1 g
t+1
j /ht

(zt+1)−1+
∑k

j=1(ht+1
j)−1

αt+1 = αt − gt+1−ct+1

ht+1

end

Algorithm 1: Pseudocode for LDA using VI

3https://en.wikipedia.org/wiki/Concentration parameter

8

3. Optimization for Performance

3.1. Simulated Datasets

We simulated data as follows. We set M = 500,k = 10,V = 1000,ξ = 40,a = 2,b = 1 with seed 123. 4

Input: M , k, V , ξ , shape a and scale b of the gamma distribution
Output: List of documents (docs), α, β
Sample α ∼ Γ(a, b)

Sample β ∼ Dir(1V)
Sample N ∼ Poisson(ξ)
Sample θ ∼ Dir(α)
for each document d = 1 to M do

for each word n = 1 to Nd do
Sample a topic zdn ∼Multinomial(θd)
Sample a word wdn ∼Multinomial(zdnβ)

end
end

Algorithm 2: Pseudocode for data simulation

3.2. Optimization for Performance

Here the default of the algorithm is set as:

M_step(docs=docs,k=10,tol=1e-3,tol_estep=1e-3,max_iter=100,

initial_alpha_shape=100,initial_alpha_scale=0.01)

Plain Version: We first implement plain Python in straightforward way from the description of the algorithm. For
the plain version, we take V = 100 instead of V = 1000. But still it takes about half an hour to run.

Vectorization: We optimize the algorithm with vectorization. To be more specific, we replace most of the for-
loops with matrix operation and broadcast. There would be no for-loop inside each E-step: For each document, we
only use matrix operation and broadcast to update φ and γ. This version use for loop only when iterating through
documents: In detail, we replace the nested for loop in Algorithm 3 with matrix multiplication as shown below. In
addition, the input of can be extended, not only one-hot coding matrix. Each document could be represented
as a N ′d × V matrix, where N ′d is the number of unique words. Each row has only one non-zero entry indicate the
count of word n in document d. The calculation can be eased in this way.

JIT and Cython:To make our code faster, we have tried Jit and Cython. However, their performance have not
improved. A reasonable explanation is that all the operation inside the vectorized python versions are carried out
through numpy, which is already based on C++. Also, JIT would not help for matrix multiplication and broadcast.
Therefore, there is not much to do for Jit or Cython. In fact, using Jit or Cython here may even make the algorithm
slower.

Parallel: We’ve also tried parallel. In our code, the only part can be paralleled is when implementing E-step for
each document because for other parts the latter iteration relies on the result of the former iteration. So Variational
EM algorithm is not suitable for parallel. As shown in Table 3.2. Here we can tell that the CPU time is much
less. However, wall time is much more. This might be due to more time are spent to allocate and store resources

4Refer to function simulation data in our package

9

Input: wd is N ′d × V matrix, the nonzero entry is the count of word in that document.
while the ELBO has not converged do

repeat
for each document d = 1 to M do

while φ, γ has not converged do
repeat

φ = (wdβ
T)× e(Ψ(γ)−Ψ(

∑
γ))

normalize φ to let row sum equal to 1.
γ = α+

∑
k Φ·,k

until φ, γ have converged;
end
β = β + φT γ

end
normalize β to let row sum equal to 1.

until α,β have converged;
update α in the same way as above

end
Algorithm 3: Pseudocode for the vectorized version

during the parallel. Notice We use package ray. Please pip install ray first before running out examples.
Need to notice this version sometimes cannot be run in VM but can be run locally. Although parallel vesion is
not suitable, we can use parallel for running vectorizaiton version several times with different initialization on the
same datasets to get stable results.

The table 3.2 show the time for each version. We time Vectorization version for 10 times and get the mean of the
time. For plain version, we set V = 100 instead of V = 1000 and run only once. For parallel version we run
only once. Taking time efficiency and simplicity of code into consideration, we chose Vectorization Version as
our final version and take it for application. All the versions can be found in our package VIonLDA. We also
include detailed possible data structure improvement on discussion session.

Version Plain Version Vectorizaiton Version Parallel Version
CPU total 31min25s 53.1s 11.8s
CPU user 31min18s 53.0s 7.21s
CPU sys 6.66s 40ms 4.59s
Wall time 31min38s 53.3s 2min34s

Table 1. Optimization for Performance.

4. Applications to Simulated Datasets

Here based on the simulation data above, we compare our result with the true parameters. Notice we useMSEβ =∑k
i=1

∑V
j=1(βestij − βtrueij)2 to measure the performance for estimator. For α, we use MSEα =

∑k
i=1(α∗esti −

10

α∗truei)2. Here α∗i = αi∑k
i=1 αi

. Because for θ ∼ Dir(α),E(θi) = αi∑k
i=1 αi

. α is concentration parameters5, we

care more on the relative value instead of the scale. We applied Variational EM to the simulation dataset with the
setting as follows (repeated 100 times):

M_step(docs=docs,k=10,tol=1e-3,tol_estep=1e-3

For reasonable guess, we set initial_alpha_shape=100,initial_alpha_scale=0.01).

For true initialization, we set the initialization of α the true value of α.

The result as follows:6

Initialization Reasonable Guess True Initialization True Initialization
Iteration=100 Iteration=100 Iteration=1000

α 7.197e-03±5.184e− 04 1.948e-03±4.613e− 04 4.139e-03±8.928e− 04

β 7.598e-06±3.433e− 07 8.471e-06±9.445e− 07 5.706e-06±5.111e− 07

Table 2. MSE for Parameters Estimation

Initialization Reasonable Guess True Initialization True Initialization
Iteration=100 Iteration=100 Iteration=1000

α 0.420 0.114 0.241
β 3.852 4.295 2.893

Table 3. Relative MMSE for Parameters Estimation

From the table 2 we can see the performance of parameter estimation highly depends on the initialization. The
intrinsic property of EM algorithm is it cannot achieve the global optimal point. The initialization play an important
role on its performance. With the true α as initialization, the MSE for α decrease significantly. Also, increasing
iteration would bring improvement. Here we can see the estimation on β is not well performed. This may due to
the initialization. We set β0 ∼ Dir(1) (True β ∼ Dir(1)). Also, it may due to the iteration is not enough for the
algorithm to converge.

Actually, we only care about the rank statistics of α and β. Here we present a visualization on this . As figure 2
shows, the rank each row is relative similar. Notice we only set max_iter=100, the discrepancy may due to the
algorithm has not yet converge. Actually, we applied the algorithm on real dataset, it performs well.

5https://en.wikipedia.org/wiki/Concentration parameter
6We applied parallel for this part, it takes 12min 50s in total. Without parallel, it would take more than 100 minutes.

11

Figure 2. Comparison on BETA and estimated BETA.The left plot is true BETA. The right plot is estimated BETA.

5. Application to Real Datasets

Same as applying the algorithm to the simulated data set, we apply the algorithm to the real dataset mentioned
in the paper and investigate the results returned. Here to avoid overflow problem, we’ve normalized γ in E-step
by dividing each of its elements by the minimum value. So you can see from our Github that apart from the
Vectorization version we also provide a Realdata version.

Our data are documents from the TREC AP corpus(Harman, 1992). After removing a standard list of stop words,
numbers and punctuation, we used the Vectorization version of Variational EM algorithm descried above to find
the Dirichelet and conditional multinomial parameters α and β for a 10-topic LDA model. Notice here we only
take the first 500 documents as an illustration. We applied the algorithm to the dataset with the setting as follows:

M_step(docs=docs,k=10,tol=1e-3,tol_estep=1e-3,max_iter=100,

initial_alpha_shape=100,initial_alpha_scale=0.01)

For each of the topic, we look at β to get the top 50 words that is likely to be classified to be in that topic and
decide what that topic should be. The topics and some of their potential component words are shown below:

12

Economy Legislation Diplomacy Finance Domestic Politics
1 market law president dollar bush
2 prices drug agreement bid presidential
3 orders court soviet bank campaign
4 economy rights aid yen state
5 index committee south london democratic
6 rate prison foreign million national
7 bank legislation summit trust republican
8 business attorney iraq gold senate
9 average abortion peace price candidate
10 company legal statement board governor

Table 4. Topics and related words I

Crime Entertainment Global Politics Welfare Military
1 police new government air government
2 area rating president systems military
3 killed hunt soviet water party
4 authorities cancer(zodiac?) black energy death
5 victims art chairman public defense
6 reported fish agreement black army
7 arrested play africa help soldiers
8 death group officials community leaders
9 angeles like spokesman rights soviet
10 church heat white security force

Table 5. Topics and related words II

It is obvious that our algorithm is doing a good job in terms of parameter estimation.

6. Comparative Analysis with Competing Algorithm

After verifying that our algorithm is doing a good job in terms of estimation, we compare the time efficiency
of our algorithm with the function in sklearn. We use the dataset stated in section 3.1. The algorithm for
LatentDirichletAllocation in sklearn.decomposition is not fully based on Blei et al., 2003. It
applied Latent Dirichlet Allocation with batch variational Bayes algorithm. It is expected that algorithms using
batch will have better performance since in batch structure large repeated jobs are given to the system and we dont
have to interact with computer to tell the system that you have to do that job after finishing that job. In other words,
batch structure is super useful for large jobs are done in sequence by the system. We timed both algorithms and
the results are shown below:

13

Version Vectorization version sklearn
CPU total 58s 16.3s
CPU user 40ms 40ms
CPU sys 58.1s 16.4s
Wall time 58.4s 16.5s

Table 6. Detailed Time Comparison with sklearn

Version time(3 runs, 5 loops)
vectorized 58.2 s ± 950 ms per loop

sklearn 15.5 s ± 199 ms per loop

Table 7. Time Comparison with sklearn

7. Additional: Smoothing LDA

For the smoothing version of LDA, we give a prior on β. See graphical model firgure 3. Blei et al.,2003 does not
provide much details in the paper. Here we provide brief idea, mathematical proof and detailed pseudocode.

Figure 3. Graphical Model Representation of Smoothed LDA model

Similarly, compared to LDA model, we add one more variational parameter λ. So compared to equation 7, the
optimization function becomes:

ELBO(γ, φ, λ;α, η) = Eq[logp(θ, z,w, β|α, η)]− Eq[logq(θ, z, β)]

= Eq[logp(θ|α)] + Eq[logp(z|θ)] + Eq[logp(w|z, β)] + Eq[logp(β|η)]

−Eq[log
∏k
i=1 q(βi|λi)

∏M
d=1(q(θd|γd)

∏Nd
n=1 q(Zdn|φdn))]

Similarly, we get the partial derivative with respect to φ,γ,λ,α,η. Notice the update of γ and α still remain the
same as LDA update, for they do not have ”direct” connection to β. So the update equation is as follows:

φdn,i ∝ exp(Ψ(γdi)−Ψ(
∑
i

γdi) + Ψ(λi,j)−Ψ(
V∑
j=1

λi,j)

γd = α+

Nd∑
n=1

φdn

14

λi = η +

M∑
d=1

Nd∑
n=1

φidnwdn

To update α and η, we need to apply linear-time Newton-Raphson algorithm. The update α remains the same as
LDA. Here we present the update for η.

ηt+1
j = ηtj − (H(ηt)−1g(ηt))j

= ηtj −
gtj−ct

htj

where ct =
∑V

j=1 g
t
j/h

t
j

(zt)−1+
∑V

j=1(htj)−1

With

zt = KΨ′(
V∑
j=1

ηtj)

htj = −KΨ′(ηtj)

gtj = K(Ψ(

V∑
j=1

ηj)−Ψ(ηj)) +

K∑
i=1

(Ψ(λij)−Ψ(

V∑
j=1

λij))

Here we provide the vectorization version for the pesudocode.

Input: a set of words in documents D = {w1, ...,wM}, number of topics k, initialization parameters
Output: Variational parameters φ, γ, parameters α,β
Initialize:η0

j ∼ Gamma(shape, scale);
α0
k ∼ Gamma(shape, scale);
φ0
ni := 1/k for all i and n;
γ0
i := αi +N/k for all i
λ0
i ∼ Gamma(shape, scale) for all i

while the ELBO has not converged do
repeat

for each document d = 1 to M do
φ = (wd@(exp(Ψ(λ)− (Ψ(

∑
j λ)[:, None]))).T) ∗ exp(Ψ(γ)−Ψ(

∑
i γ))

normalize
∑

k φ to 1
γ = α+

∑
n φ

end
until φ,γ have converged;
λ =

∑M
d=1 φ

T
d @wd

normalize
∑

j βij to 1.
update α, η

end
Algorithm 4: Pseudocode for Smoothing LDA Using VI

15

8. Conclusion

We applied Variational EM algorithm on LDA model. We achieved 1)Generate collections of documents accord-
ing to LDA model. 2)Optimize the performance of the algorithm. We show that using a matrix multiplication,
vectorization and broadcast would improve a lot. JIT and parallel would not contribute much to the algorithm
optimization. However, if we want to repeat algorithm several times when testing on simulation datasets. Parallel
(package ray) would be recommended. 3) We applied the algorithm to simulated data, showing the initialization
matters a lot on Variational EM. 4) We applied algorithm to real dataset and get reasonable results. 5)We provide
Variational EM on smoothing LDA in details. 6) All the versions of Variational EM are packaged. We also pro-
vide tests and examples on github. Notice the function with ray would not always work in VM. But it would work
locally.

9. Discussion

More improvements can be done to algorithm performance. 1)The data structure. The highlight of our report
is using matrix multiplication, vectorization and broadcast to reduce the for loop. However, in our vectorization
version, each document is a N ′d × V matrix.7 This would be a sparse matrix, each row has only 1 non-zero
entry. Storing large matrix and sparse matrix multiplication would be inefficient. If we consider documents as
M × V matrix, each document as a V ∗ 1 vector, and design the algorithm on such data structure would improve
a lot. 2)The algorithm. We could see from the pseudocode, each step depend on the result of last step. It is hard
to achieve parallel. 3)Initialization. As we show in table 2, initialization really matters for the Variational EM
algorithm can only achieve local optimization. Package sklearn outperform ours from the data structure and
the algorithm, it use a batch VI bayes method or online VI bayes method, and take M × V as input.

More discussion on data structure improvement: In the Vectorization version, large computation comes from
the multiplication between large matrix wd and β when updating φ, and multiplication between large matrix wd

and φ when updating β. In addition, the matrix wd is a N ′d × V sparse matrix, with only one nonzero entry
each row. The matrix multiplication is ”aggregation effect”: ”select the corresponding vocabulary from each
document and aggregate them together”. or ”select the corresponding topic from each document and aggregate
them together.” So we can add the ”same vocabulary effect” together among different documents to update the
parameter φ and β. If we could use a vector instead of a sparse matrix to represent a document, and design
algorithm on it. The computation would be reduced a lot. The ideal data structure for documents isM×V matrix.
Each row is a vector indicating the count for vocabulary. The main obstacle for the algorithm comes from the
asynchronous update of E-step and M-step. We need to update α and β based on optimal φ and γ. If we loose the
condition, to update φ,γ,α and β synchronously, we could design our algorithm based on M × V matrix as input.

Here we just provide a small example on the efficiency of the vector compared to matrix multiplication. In the
structure version, we use a Nd × 1 vector instead of Nd × V matrix as input for E-step. We can see around 3
senconds improvement.

7N ′d is number of unique words

16

Version time(3 runs, 5 loops)
Vectorization 58.2 s ± 950 ms per loop

Structure 54.6 s ± 458 ms per loop

Table 8. Time Comparison with Structure

10. Code

Github: https://github.com/YunranChen/VIonLDA

Pacakge: pip install --index-url https://test.pypi.org/simple/ VIonLDA

References

[1] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. Journal of the American
Statistical Association, 112(518):859–877, 2017.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine Learning research, 3(Jan):993–
1022, 2003.

17

