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Mixture/Juggle:

turn-taking dynamics

Phase 1 (Single neuron fluctuation)

Within-trial
Across-trial

Phase 2 (Neural Population Coordination) Research Question

• Block correlation matrix estimation
• Unknown block structure: grouping w.r.t.
variables

• Flexibility: off-diagonal correlation (-1,1)
• Interpretability: model assumptions + priors
• Statistical efficiency: large p small n cases
• Computational efficiency: conjugate priors

Fig. 1: An example of a block correlation matrix (50 variables)

Method: Bayesian Block Correlation Matrix Estimation
• Permuted Data:
• Canonical Representation of Block Covariance Matrix:

where

(Archakov and Hansen, 2020)

• Groups allocation: Mixture of Finite Mixtures (MFM) (Miller and Harrison, 2018)

§ Correlation Matrix maintains SAME block structure if:

Synchronously

Asynchronously

Orthonormal

Representatives

Pseudo-diagonal

Replicates

• Conjugate Priors:

OrthonormalBlock Covariance

§ Interpretation:

Rotation

• Log likelihood:

Group allocation

Depends on Group size only

Numerical Experiments

Fig. 2: Examples of induced priors for block
correlation under different group allocation

(1) invariant to group size
(2) between-group:
uniformly distributed
(3) within-group:
positive, relatively high
• Scale with group size:

• Non-informative priors:

BCM recovers the
true block structure
in a decent way
(smoothing/denoise)
even under small n
large p cases.

• Estimation accuracy:
BCM outperforms other
alternatives except for
situations with large p/k ratio
(measured by Frobenius Dist)

• Grouping:

(p=100, n=20)


