Detection of Code Juggling with Spike Counts Data Analysis

Yunran Chen and Surya T. Tokdar Department of Statistical Science, Duke University, Durham, NC 27708, USA

Motivation

How does brain preserve information about multiple simultaneous items?

Description decision of the second signal
 Description decision of the second signal
 Small receptive field (perceptual sensitivity)

• Receptive fields too large

• Visual (Alonso and Chen, 2009; Keliris et al., 2019)

• Auditory (Groh et al., 2003; Werner-Reiss and Groh, 2008; Bulkin and Groh, 2011)

A single neuron will be exposed to multiple simultaneous stimuli !

- Dynamics in presentation in a neural level
- Can a single neuron preserve info from both

Motivation: potential dynamics

- Always encode A (or B)
 - 1st order stochasticity
 - Poisson distribution (Ventura et al., 2002; Kass et al., 2005)
 - Treat it as a new stimulus
- Switch between A and B
- Code Juggling
- 2nd order stochasticity: constituent stimuli
- Greater efficiency on information preserving
- Overdispersed + bounded by A & B

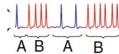
- Stochasticity not related A nor B
- Overdispersed
- Not related to A nor B

Across trials (Caruso et al., 2018) B

A

А

• Within a trial (Glynn et al., 2021)

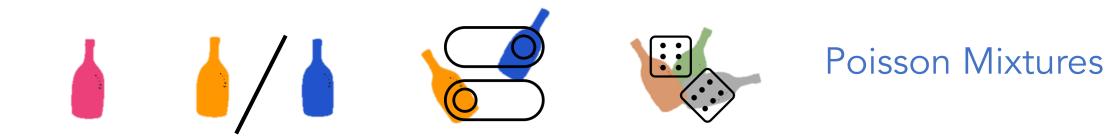


Highe

Higher trial-to-trial variability (Semedo et al., 2019)

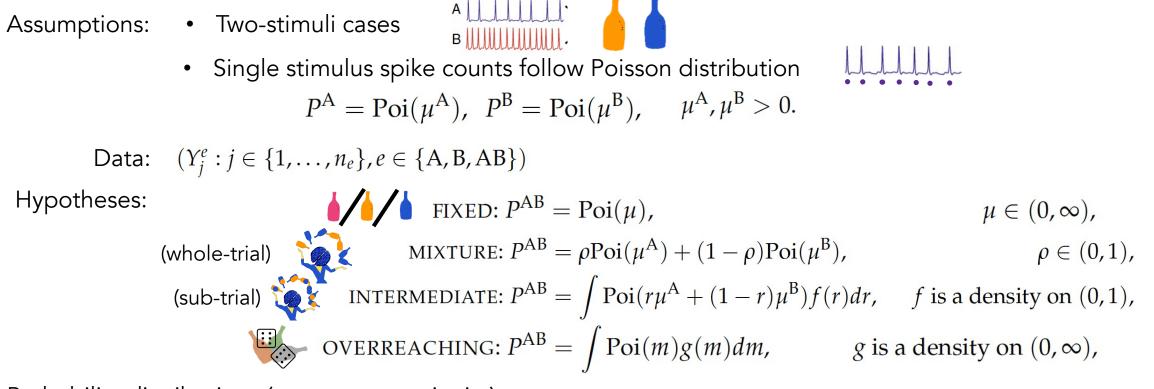
Research question:

How to model these biologically meaningful encoding schemes?



How to select the most likely scheme and quantify the uncertainty?

Hypothesis Testing (Bayes Factor)



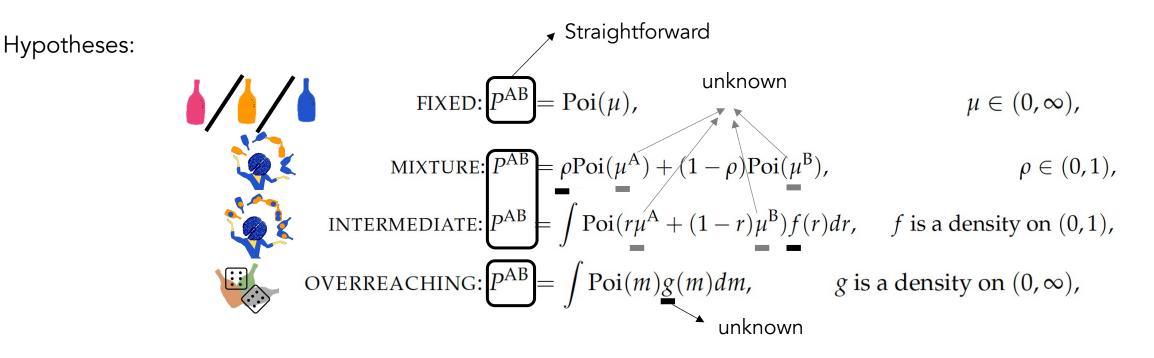


Hypothesis Testing in a Bayesian frameworkPriorDataPosteriorMixtureSpike countsMixture $Y_i^e : j \in \{1, \dots, n_e\}, e \in \{A, B, AB\}$

Challenges: nonparametric density estimation and fair competition Predictive recursion marginal likelihood method (PRML) (Newton et al., 1998; Newton, 2002; Tokdar et al., 2009; Martin and Tokdar, 2011)

Overreaching

Fixed



Hypotheses:

FIXED:
$$P^{AB} = Poi(\mu)$$
,

 $\mu \in (0,\infty),$

Marginal likelihood: $p(Y^A, Y^B, Y^{AB}) = p(Y^A)p(Y^B)p(Y^{AB}|Y^A, Y^B)$

$$p(\Upsilon^{AB}|\Upsilon^{A},\Upsilon^{B}) = p(\Upsilon^{AB}) = \int p(\Upsilon^{AB}|\mu)\pi(\mu)d\mu$$

Set a prior and can obtain closed form

OVERREACHING:
$$P^{AB} = \int \operatorname{Poi}(m)g(m)dm$$
,

g is a density on $(0, \infty)$,

Marginal likelihood: $p(\Upsilon^{AB}|\Upsilon^{A},\Upsilon^{B}) = p(\Upsilon^{AB})$

Predictive Recursion (Smith and Markov, 1978; Newton et al., 1998; Newton, 2002)

Data
$$Y_1, ..., Y_n$$
 from mixture distribution
 $m_f(y) = \int \kappa(y \mid u) f(u) d\nu(u)$
For $i \in \{1, ..., n\}$
 $f_i(u) = (1 - w_i) f_{i-1}(u) + w_i \frac{\kappa(Y_i \mid u) f_{i-1}(u)}{m_{i-1}(Y_i)}, u \in \mathcal{U},$
 $m_{i-1}(y) = \int \kappa(y \mid u) f_{i-1}(u) d\nu(u), \quad y \in \mathcal{Y}$

Theoretical guarantee (Tokdar et al., 2009):

 $f_n \quad m_n$ converge to the truth asymptotically (provided $\sum_{i=1}^{\infty} w_i = \infty$ $\sum_{i=1}^{\infty} w_i^2 < \infty$) Bayesian inferential paradigm interpretation (Tokdar et al., 2009)

MIXTURE:
$$P^{AB} = \rho \text{Poi}(\mu^A) + (1 - \rho) \text{Poi}(\mu^B), \qquad \rho \in (0, 1),$$

INTERMEDIATE: $P^{AB} = \int \text{Poi}(r\mu^A + (1 - r)\mu^B)f(r)dr, \quad f \text{ is a density on } (0, 1),$

Marginal likelihood:

First-stage prior:

Second-stage prior:

$$p(Y^{AB}|Y^{A}, Y^{B}) = \int p(Y^{AB}|\theta) p(\theta|Y^{A}, Y^{B}) d\theta \qquad \theta = (\mu^{A}, \mu^{B})$$
$$\pi_{0}(\mu^{A}, \mu^{B}) = 1/\sqrt{\mu^{A}\mu^{B}},$$

 $\pi(\mu^{A}, \mu^{B}) = \operatorname{Gam}(\mu^{A} \mid 0.5 + \sum_{j=1}^{n_{A}} Y_{j}^{A}, n_{A}) \times \operatorname{Gam}(\mu^{B} \mid 0.5 + \sum_{j=1}^{n_{B}} Y_{j}^{B}, n_{B}).$

$$m_f(y) = \int \kappa_\theta(y \mid u) f(u) d\nu(u)$$

PRML score (Martin and Tokdar, 2011)

Predictive Recursion Marginal Likelihood

Data $Y_1, ..., Y_n$ from mixture distribution

 $i \in \{1,\ldots,n\}$

 $m_f(y) = \int \kappa_\theta(y \mid u) f(u) d\nu(u)$

Predictive Recursion

(Newton et al., 1998; Newton, 2002)

$$f_i(u) = (1 - w_i)f_{i-1}(u) + w_i \frac{\kappa_{\theta}(Y_i \mid u)f_{i-1}(u)}{m_{i-1}(Y_i)}, \ u \in \mathcal{U},$$
$$m_{i-1,\theta}(y) = \int \kappa_{\theta}(y \mid u)f_{i-1}(u)d\nu(u), \quad y \in \mathcal{Y}$$

 $\kappa = \kappa_{\theta}$

PRML score

(Martin and Tokdar, 2011)

• PRML score estimate true marginal density: $p(Y_1, \ldots, Y_n \mid \theta) = \prod_{i=1}^n p(Y_i \mid Y_1, \ldots, Y_{i-1}, \theta)$

 $L_n(\theta) := \prod_{i=1}^n m_{i-1,\theta}(Y_i)$

- Asymptotic consistency: $n^{-1}\log\{L_n(\theta)/L_n(\theta^*)\} \to -\inf_{f\in\mathbb{F}} d_{\mathrm{KL}}(m^*, m_{f,\theta}).$
- Interpretable: expectation filtration approximation to a fully Bayesian estimation $w_i = (1+a)^{-1}$, a > 0Laplace Approximation: $I(M_h) := \int_{\Theta_h} L_{n,h}(\theta_h) \pi_h(\theta_h) d\theta_h$, $h \in H$, $\hat{I}(M_h) = L_{n,h}(\hat{\theta}_h)(2\pi)^{-d_h/2} |\Sigma_h|^{1/2}$,

Fair competition: choice of priorPriorImage: DataImage: Posterior

Mixture Mix

Spike counts

 $(Y_j^e : j \in \{1, \dots, n_e\}, e \in \{A, B, AB\})$

 $p_h(Y) = \frac{I(M_h)p_{0,h}}{\sum_{\mu \in \mathcal{U}} I(M_{h\ell})p_{0,h\ell}}$

- Sensitive to the choice of prior
 - Bounded uniform (same as overreaching)
 - Jeffreys' prior (improper) - > tune the constant
 - Jeffreys' prior (intrinsic Bayes factor) (Berger & Pericchi, 1996)

Two-stage procedure **Full Bayesian** Poisson variance test Is it Fixed? Intermediate **Mixture** (Brown and Zhao, 2002) Overreaching Fixed Jeffreys' prior: tune constant to match the confidence level

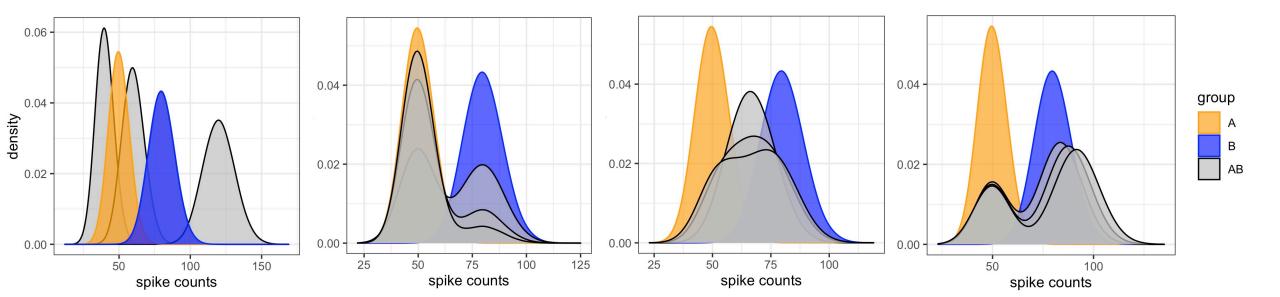
 $p(Y^{AB}|Y^{A}, Y^{B}) = p(Y^{AB}) = \int p(Y^{AB}|\mu)\pi(\mu)d\mu$ $\pi(\mu) \propto \mu^{-1/2}$

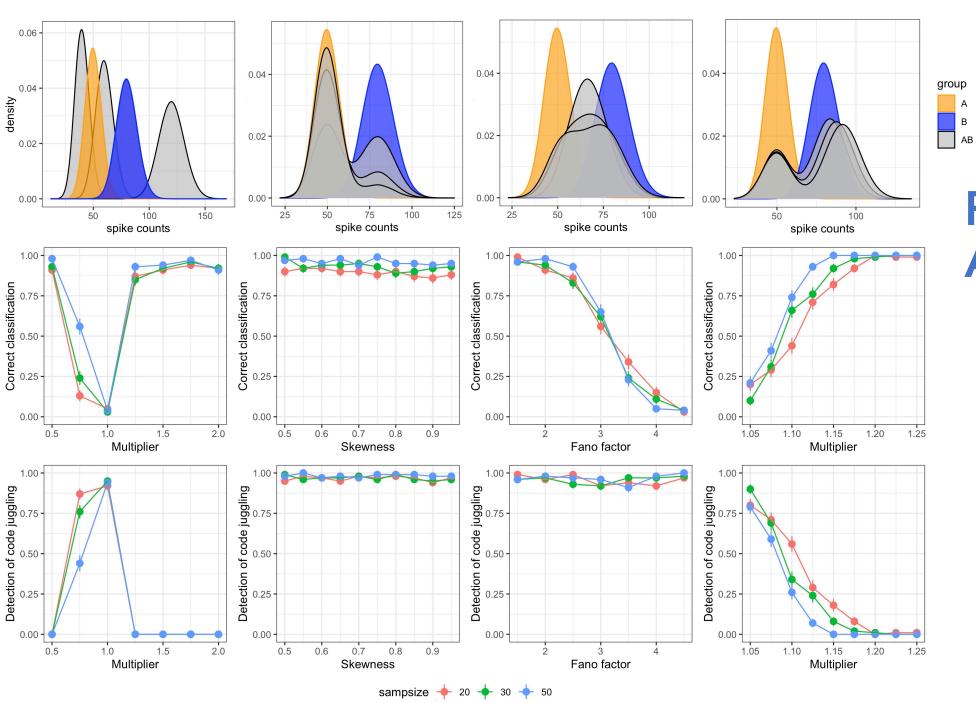
Two potential frameworks

Performance Assessment

100 experiment sets: $P^{A} = Poi(50)$ $P^{B} = Poi(80)$ $n_{A} = n_{B} = n_{AB}$ $P^{AB} = Poi(80m)$ FIXED: $P^{AB} = mPoi(50) + (1 - m)Poi(80)$ MIXTURE: $P^{AB} = \int \operatorname{Poi}(r50 + (1 - r)80)\operatorname{Beta}(r; a, b)dr$ **INTERMEDIATE:** $P^{AB} = 1/3$ Poi(50) + 2/3Poi(80m)**OVERREACHING:**

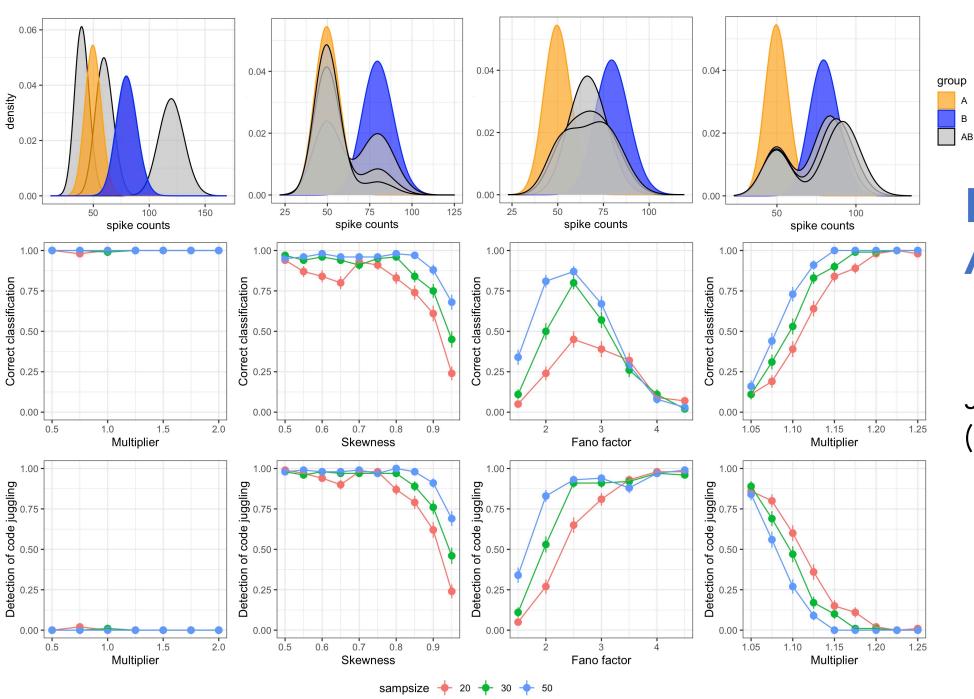
Multiplier Skewness Fano factor Multiplier





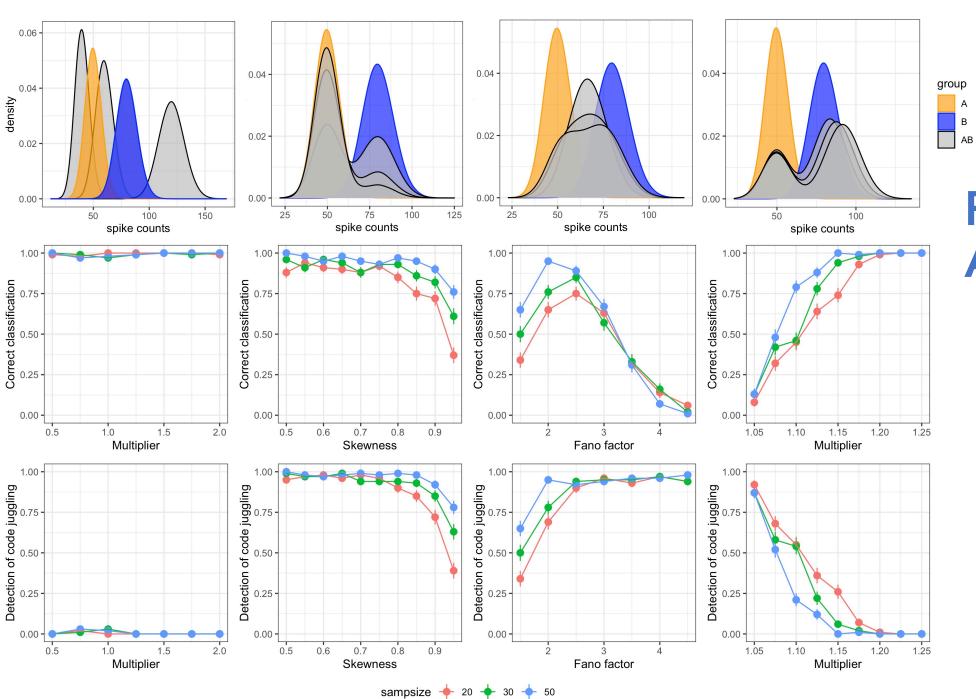
Performance Assessment

Bounded Uniform



Performance Assessment

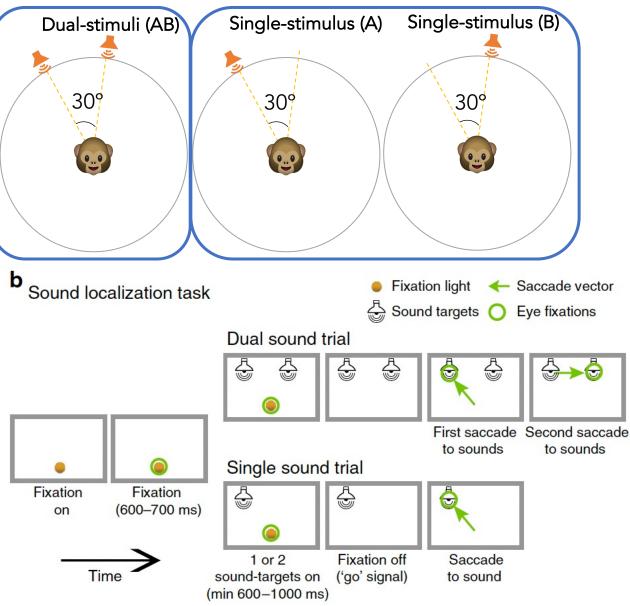
Jeffreys' prior (intrinsic Bayes factor)



Performance Assessment

Jeffreys' prior (w/ constant 1)

Application in IC data

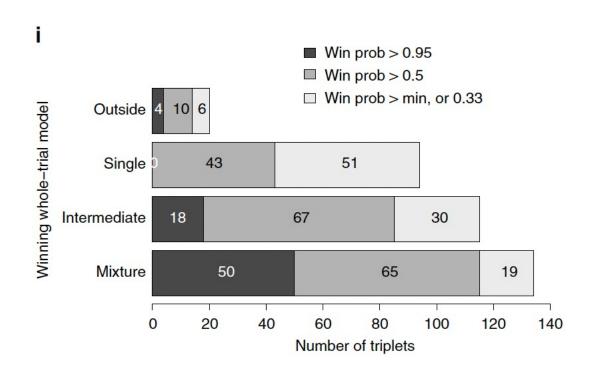


Experiment design (Caruso et al., 2018)

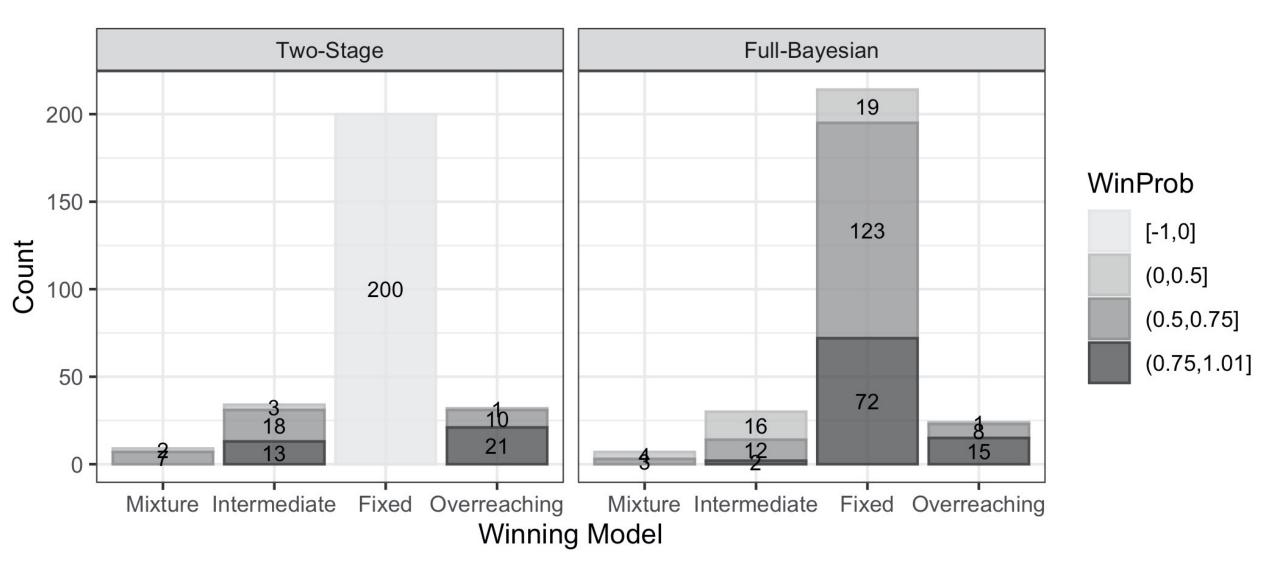
- Localization task: eye movements to sound (saccades)
- Single cell recording in Inferior colliculus (IC): accurate sound localization

Results from Caruso et al. (2018)

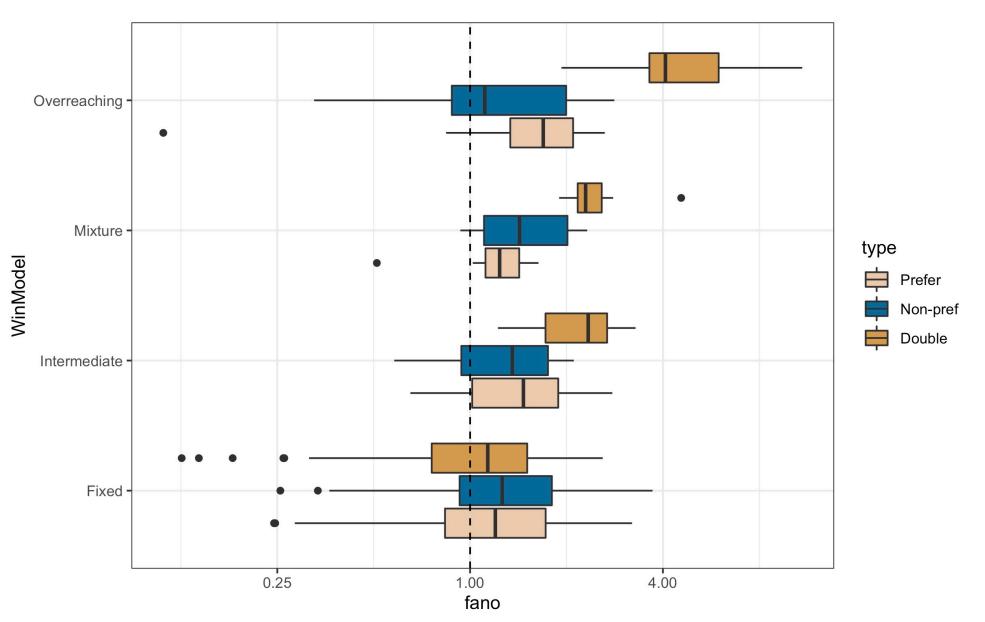
• Chi-square goodness of fit test: 363 triplets



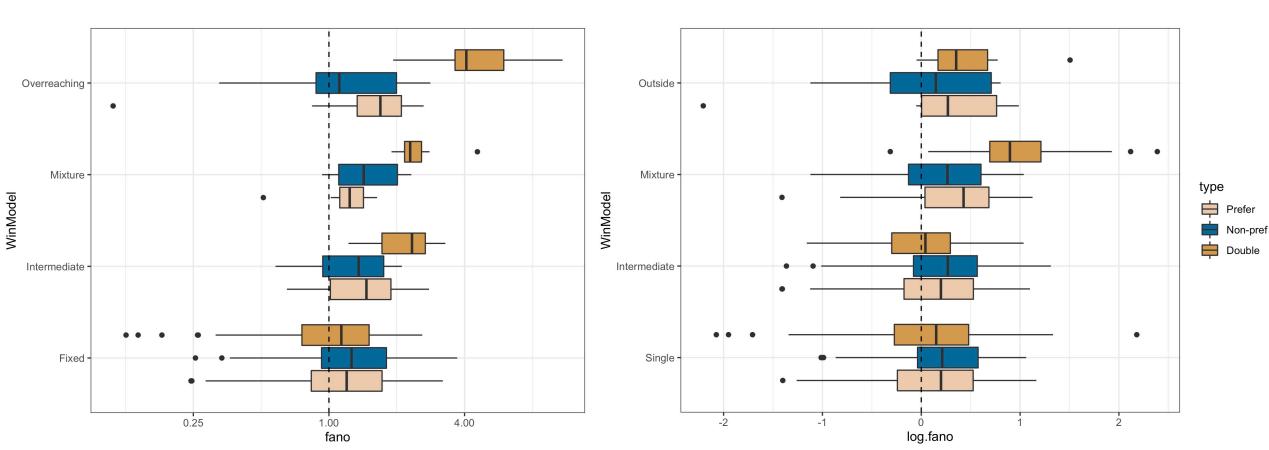
Preprocessing: Poisson variance test (Brown and Zhao, 2002) ensure Poisson-like distribution for single stimulus



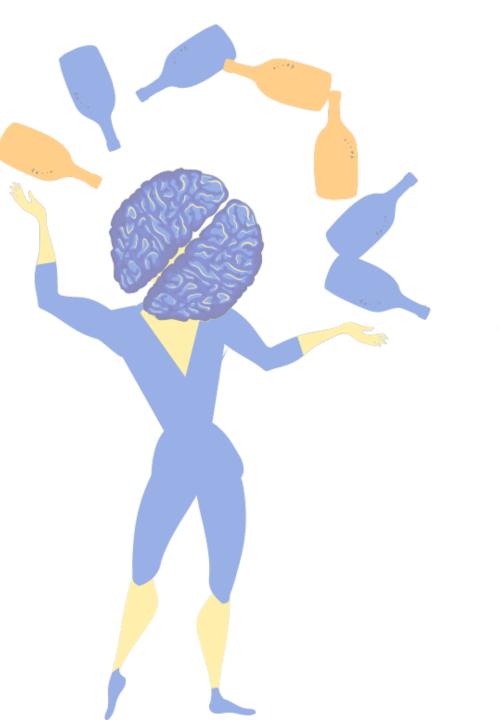
Results



New Method



Results



Thank you

Reference

Abramowitz, M. and I. A. Stegun (1965). *Handbook of mathematical functions: with formulas, graphs, and mathematical tables,* Volume 55. Courier Corporation.

- Brown, L. D. and L. H. Zhao (2002). A test for the poisson distribution. *Sankhyā: The Indian Journal of Statistics, Series A*, 611–625.
- Caruso, V. C., J. T. Mohl, C. Glynn, J. Lee, S. M. Willett, A. Zaman, A. F. Ebihara, R. Estrada, W. A. Freiwald, S. T. Tokdar, et al. (2018). Single neurons may encode simultaneous stimuli by switching between activity patterns. *Nature communications* 9(1), 2715.
- Glynn, C. D., S. T. Tokdar, A. Zaman, V. C. Caruso, J. T. Mohl, S. M. Willett, and J. M. Groh (2019). Analyzing second order stochasticity of neural spiking under stimuli-bundle exposure. Submitted.
- Martin, R. and S. T. Tokdar (2011). Semiparametric inference in mixture models with predictive recursion marginal likelihood. *Biometrika* 98(3), 567–582.
- Newton, M. A. (2002). On a nonparametric recursive estimator of the mixing distribution. *Sankhyā: The Indian Journal of Statistics, Series A*, 306–322.
- Newton, M. A., F. A. Quintana, and Y. Zhang (1998). Nonparametric bayes methods using predictive updating. In *Practical nonparametric and semiparametric Bayesian statistics*, pp. 45–61. Springer.
- Semedo, J. D., A. Zandvakili, C. K. Machens, M. Y. Byron, and A. Kohn (2019). Cortical areas interact through a communication subspace. *Neuron* 102(1), 249–259.

Tokdar, S. T., R. Martin, J. K. Ghosh, et al. (2009). Consistency of a recursive estimate of mixing distributions. *The Annals of Statistics* 37(5A), 2502–2522.

PRML Algorithm

Input: i.i.d observations $Y_1, ..., Y_n$ **Output:** marginal likelihood $L_n(\theta) = \prod_{i=1}^n m_{i-1,\theta}(Y_i)$, gradient $\nabla \log L_n(\theta) = \sum_{i=1}^n \nabla \log m_{i-1,\theta}(Y_i)$ and mixing density $f_{n,\theta}$ **Initialize:** $f_{0,\theta} \in \mathbb{F}$ of f (usually uniform);compute $\nabla f_{0,\theta}(u)$; weights $w_1, ..., w_n \in (0, 1)$ (usually $w_i = (i+1)^{-\gamma}$) **for** i = 1, ..., n **do**

$$m_{i-1,\theta}(Y_i) = \int p(Y_i|\theta, u') f_{i-1,\theta}(u') d\mu(u')$$
(13)

$$f_{i,\theta}(u) = (1 - w_i)f_{i-1,\theta}(u) + w_i \frac{p(Y_i|\theta, u)f_{i-1,\theta}(u)}{m_{i-1,\theta}(Y_i)}$$
(14)

For $\nabla f_{i,\theta}(u)$:

$$G(\theta, u) = p(Y_i|\theta, u) \nabla f_{i-1,\theta}(u) + \nabla p(Y_i|\theta, u) f_{i-1,\theta}(u)$$
(15)

$$\nabla \log m_{i-1,\theta}(Y_i) = \frac{\int G(\theta, u) d\mu(u)}{m_{i-1,\theta}(Y_i)}$$
(16)

$$\nabla f_{i,\theta}(u) = (1 - w_i) \nabla f_{i-1,\theta}(u) + w_i \{ \frac{G(\theta, u) - p(Y_i | \theta, u) f_{i-1,\theta}(u) \nabla \log m_{i-1,\theta}(Y_i)}{m_{i-1,\theta}(Y_i)} \}$$
(17)

end