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Motivation
How does brain preserve information about multiple simultaneous items ?

• Designated neurons for each signal

• Receptive fields too large

• Visual (Alonso and Chen, 2009; Keliris et al., 2019)

• Auditory (Groh et al., 2003; Werner-Reiss and Groh, 2008; Bulkin and Groh, 2011)

A single neuron will be exposed to multiple simultaneous stimuli !

• Small receptive field
(perceptual sensitivity)

• Dynamics in presentation in a neural level
• Can a single neuron preserve info from both and



Motivation: potential dynamics

• Treat it as a new stimulus

• Always encode A (or B)

• Switch between A and B • Across trials
(Caruso et al., 2018)

• Within a trial
(Glynn et al., 2021)

• Stochasticity not related A
nor B

• 1st order stochasticity
• Poisson distribution
(Ventura et al., 2002; Kass et al., 2005)

• Code Juggling
• 2nd order stochasticity: constituent stimuli
• Greater efficiency on information preserving
• Overdispersed + bounded by A & B

• Overdispersed
• Not related to A nor B

Higher trial-to-trial
variability
(Semedo et al., 2019)



Research question:
How to model these biologically meaningful encoding schemes?

How to select the most likely scheme and quantify the uncertainty?

Hypothesis Testing
(Bayes Factor)

Poisson Mixtures



Statistical Analysis Framework
Assumptions:

• Single stimulus spike counts follow Poisson distribution

• Two-stimuli cases

Data:

Hypotheses:

(whole-trial)

(sub-trial)

Probability distributions (support + continuity):



Hypothesis Testing in a Bayesian framework

Mixture Intermediate

Fixed Overreaching

Prior Data Posterior

Spike counts
Mixture

Challenges: nonparametric density estimation and fair competition

Predictive recursion marginal likelihood method (PRML)
(Newton et al., 1998; Newton, 2002; Tokdar et al., 2009; Martin and Tokdar, 2011)



Statistical Analysis Framework
Hypotheses: Straightforward

unknown

unknown



Statistical Analysis Framework

Hypotheses:

Marginal likelihood:

Set a prior and can obtain closed form



converge to the truth asymptotically  ( provided                                                   )

Predictive Recursion
Marginal likelihood:

Bayesian inferential paradigm interpretation (Tokdar et al., 2009)

Data from mixture distribution

Statistical Analysis Framework

For

unknownknown

(Smith and Markov, 1978; Newton et al., 1998; Newton, 2002)

Theoretical guarantee (Tokdar et al., 2009) :



PRML score

Marginal likelihood:

Statistical Analysis Framework

(Martin and Tokdar, 2011)

First-stage prior:

Second-stage prior:



Predictive Recursion Marginal Likelihood
Data from mixture distribution

(Newton et al., 1998; Newton, 2002)

(Martin and Tokdar, 2011)

• PRML score estimate true marginal density:

• Asymptotic consistency:
• Interpretable: expectation filtration approximation to a fully Bayesian estimation

Predictive Recursion

PRML score

Laplace Approximation:



Fair competition: choice of prior

Mixture Intermediate

Fixed Overreaching

Prior Data Posterior

Spike counts

• Sensitive to the choice of prior 
• Bounded uniform (same as overreaching)
• Jeffreys’ prior (improper) - - > tune the constant
• Jeffreys’ prior (intrinsic Bayes factor) (Berger & Pericchi, 1996)



Two potential frameworks

Mixture Intermediate

Fixed Overreaching

Full Bayesian Two-stage procedure
Is it Fixed?

Jeffreys’ prior: tune constant to match the confidence level

Poisson variance test
(Brown and Zhao, 2002)



Performance Assessment
100 experiment sets:

Multiplier

Skewness

Fano factor

Multiplier



Performance
Assessment

Bounded Uniform



Jeffreys’ prior
(intrinsic Bayes factor)

Performance
Assessment



Jeffreys’ prior
(w/ constant 1)

Performance
Assessment



Dual-stimuli (AB) Single-stimulus (A) Single-stimulus (B)

• Localization task: eye movements to sound (saccades)
• Single cell recording in Inferior colliculus (IC): accurate

sound localization
30º 30º 30º

Application in IC data
Experiment design (Caruso et al., 2018)

Results from Caruso et al. (2018)
• Chi-square goodness of fit test: 363 triplets



Results
Preprocessing: Poisson variance test (Brown and Zhao, 2002) ensure Poisson-like distribution for single stimulus



Results



Results

New Method Old Poisson



Thank you 
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PRML Algorithm


